natanielruiz
2017-09-08 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
'''
Modified from https://github.com/bearpaw/pytorch-pose
'''
 
import torch.nn as nn
import torch.nn.functional as F
import math
# from .preresnet import BasicBlock, Bottleneck
 
__all__ = ['HourglassNet', 'hg1', 'hg2', 'hg4', 'hg8']
 
class Bottleneck(nn.Module):
    expansion = 2
 
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=True)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=True)
        self.bn3 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=True)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        residual = x
 
        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)
 
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)
 
        out = self.bn3(out)
        out = self.relu(out)
        out = self.conv3(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
 
        return out
 
class Hourglass(nn.Module):
    def __init__(self, block, num_blocks, planes, depth):
        super(Hourglass, self).__init__()
        self.depth = depth
        self.block = block
        self.upsample = nn.UpsamplingNearest2d(scale_factor=2)
        self.hg = self._make_hour_glass(block, num_blocks, planes, depth)
 
    def _make_residual(self, block, num_blocks, planes):
        layers = []
        for i in range(0, num_blocks):
            layers.append(block(planes*block.expansion, planes))
        # the splat * operator gives: [[1,2], [2]] -> ([1,2], [2])
        return nn.Sequential(*layers)
 
    def _make_hour_glass(self, block, num_blocks, planes, depth):
        hg = []
        for i in range(depth):
            res = []
            for j in range(3):
                res.append(self._make_residual(block, num_blocks, planes))
            if i == 0:
                res.append(self._make_residual(block, num_blocks, planes))
            # ModuleList acts like a list
            hg.append(nn.ModuleList(res))
        return nn.ModuleList(hg)
 
 
    def _hour_glass_forward(self, n, x):
        up1 = self.hg[n-1][0](x)
        low1 = F.max_pool2d(x, 2, stride=2)
        low1 = self.hg[n-1][1](low1)
 
        if n > 1:
            low2 = self._hour_glass_forward(n-1, low1)
        else:
            low2 = self.hg[n-1][3](low1)
        low3 = self.hg[n-1][2](low2)
        up2 = self.upsample(low3)
        out = up1 + up2
        return out
 
    def forward(self, x):
        return self._hour_glass_forward(self.depth, x)
 
 
class HourglassNet(nn.Module):
    '''Hourglass model from Newell et al ECCV 2016'''
    def __init__(self, block, num_stacks=2, num_blocks=4, num_classes=16):
        super(HourglassNet, self).__init__()
 
        self.inplanes = 64
        self.num_feats = 128
        self.num_stacks = num_stacks
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=True)
        self.bn1 = nn.BatchNorm2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self._make_residual(block, self.inplanes, 1)
        self.layer2 = self._make_residual(block, self.inplanes, 1)
        self.layer3 = self._make_residual(block, self.num_feats, 1)
        self.maxpool = nn.MaxPool2d(2, stride=2)
 
        # build hourglass modules
        ch = self.num_feats*block.expansion
        hg, res, fc, score, fc_, score_ = [], [], [], [], [], []
        for i in range(num_stacks):
            hg.append(Hourglass(block, num_blocks, self.num_feats, 4))
            res.append(self._make_residual(block, self.num_feats, num_blocks))
            fc.append(self._make_fc(ch, ch))
            score.append(nn.Conv2d(ch, num_classes, kernel_size=1, bias=True))
            if i < num_stacks-1:
                fc_.append(nn.Conv2d(ch, ch, kernel_size=1, bias=True))
                score_.append(nn.Conv2d(num_classes, ch, kernel_size=1, bias=True))
        self.hg = nn.ModuleList(hg)
        self.res = nn.ModuleList(res)
        self.fc = nn.ModuleList(fc)
        self.score = nn.ModuleList(score)
        self.fc_ = nn.ModuleList(fc_)
        self.score_ = nn.ModuleList(score_)
 
    def _make_residual(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=True),
            )
 
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
 
        return nn.Sequential(*layers)
 
    def _make_fc(self, inplanes, outplanes):
        bn = nn.BatchNorm2d(inplanes)
        conv = nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=True)
        return nn.Sequential(
                conv,
                bn,
                self.relu,
            )
 
    def forward(self, x):
        out = []
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
 
        x = self.layer1(x)
        x = self.maxpool(x)
        x = self.layer2(x)
        x = self.layer3(x)
 
        for i in range(self.num_stacks):
            y = self.hg[i](x)
            y = self.res[i](y)
            y = self.fc[i](y)
            score = self.score[i](y)
            out.append(score)
            if i < self.num_stacks-1:
                fc_ = self.fc_[i](y)
                score_ = self.score_[i](score)
                x = x + fc_ + score_
 
        return out
 
def hg1(**kwargs):
    model = HourglassNet(Bottleneck, num_stacks=1, num_blocks=8, **kwargs)
    return model
 
def hg2(**kwargs):
    model = HourglassNet(Bottleneck, num_stacks=2, num_blocks=4, **kwargs)
    return model
 
def hg4(**kwargs):
    model = HourglassNet(Bottleneck, num_stacks=4, num_blocks=2, **kwargs)
    return model
 
def hg8(**kwargs):
    model = HourglassNet(Bottleneck, num_stacks=8, num_blocks=1, **kwargs)
    return model