import sys, os, argparse
|
|
import numpy as np
|
import cv2
|
import matplotlib.pyplot as plt
|
|
import torch
|
import torch.nn as nn
|
from torch.autograd import Variable
|
from torch.utils.data import DataLoader
|
from torchvision import transforms
|
import torch.backends.cudnn as cudnn
|
import torchvision
|
import torch.nn.functional as F
|
from PIL import Image
|
|
import datasets, hopenet, utils
|
|
from skimage import io
|
import dlib
|
|
def parse_args():
|
"""Parse input arguments."""
|
parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
|
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
|
default=0, type=int)
|
parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
|
default='', type=str)
|
parser.add_argument('--face_model', dest='face_model', help='Path of DLIB face detection model.',
|
default='', type=str)
|
parser.add_argument('--video', dest='video_path', help='Path of video')
|
parser.add_argument('--output_string', dest='output_string', help='String appended to output file')
|
parser.add_argument('--n_frames', dest='n_frames', help='Number of frames', type=int)
|
parser.add_argument('--fps', dest='fps', help='Frames per second of source video', type=float, default=30.)
|
args = parser.parse_args()
|
return args
|
|
if __name__ == '__main__':
|
args = parse_args()
|
|
cudnn.enabled = True
|
|
batch_size = 1
|
gpu = args.gpu_id
|
snapshot_path = args.snapshot
|
out_dir = 'output/video'
|
video_path = args.video_path
|
|
if not os.path.exists(out_dir):
|
os.makedirs(out_dir)
|
|
if not os.path.exists(args.video_path):
|
sys.exit('Video does not exist')
|
|
# ResNet50 structure
|
model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
|
|
# Dlib face detection model
|
cnn_face_detector = dlib.cnn_face_detection_model_v1(args.face_model)
|
|
print 'Loading snapshot.'
|
# Load snapshot
|
saved_state_dict = torch.load(snapshot_path)
|
model.load_state_dict(saved_state_dict)
|
|
print 'Loading data.'
|
|
transformations = transforms.Compose([transforms.Scale(224),
|
transforms.CenterCrop(224), transforms.ToTensor(),
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
|
model.cuda(gpu)
|
|
print 'Ready to test network.'
|
|
# Test the Model
|
model.eval() # Change model to 'eval' mode (BN uses moving mean/var).
|
total = 0
|
|
idx_tensor = [idx for idx in xrange(66)]
|
idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
|
|
video = cv2.VideoCapture(video_path)
|
|
# New cv2
|
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) # float
|
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float
|
|
# Define the codec and create VideoWriter object
|
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
|
out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, args.fps, (width, height))
|
|
# # Old cv2
|
# width = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)) # float
|
# height = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)) # float
|
#
|
# # Define the codec and create VideoWriter object
|
# fourcc = cv2.cv.CV_FOURCC(*'MJPG')
|
# out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, 30.0, (width, height))
|
|
txt_out = open('output/video/output-%s.txt' % args.output_string, 'w')
|
|
frame_num = 1
|
|
while frame_num <= args.n_frames:
|
print frame_num
|
|
ret,frame = video.read()
|
if ret == False:
|
break
|
|
cv2_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
|
# Dlib detect
|
dets = cnn_face_detector(cv2_frame, 1)
|
|
for idx, det in enumerate(dets):
|
# Get x_min, y_min, x_max, y_max, conf
|
x_min = det.rect.left()
|
y_min = det.rect.top()
|
x_max = det.rect.right()
|
y_max = det.rect.bottom()
|
conf = det.confidence
|
|
if conf > 1.0:
|
bbox_width = abs(x_max - x_min)
|
bbox_height = abs(y_max - y_min)
|
x_min -= 2 * bbox_width / 4
|
x_max += 2 * bbox_width / 4
|
y_min -= 3 * bbox_height / 4
|
y_max += bbox_height / 4
|
x_min = max(x_min, 0); y_min = max(y_min, 0)
|
x_max = min(frame.shape[1], x_max); y_max = min(frame.shape[0], y_max)
|
# Crop image
|
img = cv2_frame[y_min:y_max,x_min:x_max]
|
img = Image.fromarray(img)
|
|
# Transform
|
img = transformations(img)
|
img_shape = img.size()
|
img = img.view(1, img_shape[0], img_shape[1], img_shape[2])
|
img = Variable(img).cuda(gpu)
|
|
yaw, pitch, roll = model(img)
|
|
yaw_predicted = F.softmax(yaw)
|
pitch_predicted = F.softmax(pitch)
|
roll_predicted = F.softmax(roll)
|
# Get continuous predictions in degrees.
|
yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99
|
pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99
|
roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99
|
|
# Print new frame with cube and axis
|
txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted))
|
# utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width)
|
utils.draw_axis(frame, yaw_predicted, pitch_predicted, roll_predicted, tdx = (x_min + x_max) / 2, tdy= (y_min + y_max) / 2, size = bbox_height/2)
|
# Plot expanded bounding box
|
# cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0,255,0), 1)
|
|
out.write(frame)
|
frame_num += 1
|
|
out.release()
|
video.release()
|