import numpy as np
|
import torch
|
import cv2
|
from torch.utils.data.dataset import Dataset
|
import os
|
from PIL import Image
|
|
import utils
|
|
class Pose_300W_LP(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
label = torch.FloatTensor(pose)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, label, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class AFLW2000(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
label = torch.FloatTensor(pose)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, label, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
class Pose_300W_LP_binned(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class AFLW2000_binned(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
# And convert to degrees.
|
pitch, yaw, roll = pose * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1)
|
binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1)
|
binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1)
|
|
label = binned_yaw, binned_pitch, binned_roll
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, label, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
def get_list_from_filenames(file_path):
|
# input: relative path to .txt file with file names
|
# output: list of relative path names
|
with open(file_path) as f:
|
lines = f.read().splitlines()
|
return lines
|