import numpy as np
|
import torch
|
import torch.nn as nn
|
from torch.autograd import Variable
|
from torch.utils.data import DataLoader
|
from torchvision import transforms
|
import torchvision
|
import torch.backends.cudnn as cudnn
|
import torch.nn.functional as F
|
|
import cv2
|
import matplotlib.pyplot as plt
|
import sys
|
import os
|
import argparse
|
|
import datasets
|
import hopenet
|
import torch.utils.model_zoo as model_zoo
|
|
if __name__ == '__main__':
|
batch_size = 1
|
|
print 'Loading data.'
|
|
transformations = transforms.Compose([transforms.Scale(224),
|
transforms.ToTensor()])
|
|
pose_dataset = datasets.Pose_300W_LP('data/300W_LP', 'data/300W_LP/filename_list_filtered.txt',
|
transformations)
|
train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
|
batch_size=batch_size,
|
shuffle=True,
|
num_workers=2)
|
|
print 'Ready to get mean.'
|
|
for i, (images, labels, name) in enumerate(train_loader):
|
print images
|