Nataniel Ruiz
2018-02-25 80aa5f6995a29fc500f81217255f6b7c086af3f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys, os, argparse, time
 
import numpy as np
import cv2
import matplotlib.pyplot as plt
 
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
 
import datasets, hopenet
import torch.utils.model_zoo as model_zoo
 
model_urls = {
    'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
 
def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
            default=0, type=int)
    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
          default=5, type=int)
    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
          default=16, type=int)
    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
          default=0.001, type=float)
    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
          default='', type=str)
    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
          default='', type=str)
    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
          default=0.001, type=float)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
    args = parser.parse_args()
    return args
 
def get_ignored_params(model):
    # Generator function that yields ignored params.
    b = [model.features[0], model.features[1], model.features[2]]
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
 
def get_non_ignored_params(model):
    # Generator function that yields params that will be optimized.
    b = []
    for idx in xrange(3, len(model.features)):
        b.append(model.features[idx])
    for layer in model.classifier:
        b.append(layer)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
 
def get_fc_params(model):
    b = [model.fc_yaw, model.fc_pitch, model.fc_roll]
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            for name, param in module.named_parameters():
                yield param
 
def load_filtered_state_dict(model, snapshot):
    # By user apaszke from discuss.pytorch.org
    model_dict = model.state_dict()
    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
    model_dict.update(snapshot)
    model.load_state_dict(model_dict)
 
if __name__ == '__main__':
    args = parse_args()
 
    cudnn.enabled = True
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    gpu = args.gpu_id
 
    if not os.path.exists('output/snapshots'):
        os.makedirs('output/snapshots')
 
    model = hopenet.AlexNet(66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['alexnet']))
 
    print 'Loading data.'
 
    transformations = transforms.Compose([transforms.Scale(240),
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'Pose_300W_LP_random_ds':
        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=2)
 
    model.cuda(gpu)
    softmax = nn.Softmax().cuda(gpu)
    criterion = nn.CrossEntropyLoss().cuda(gpu)
    reg_criterion = nn.MSELoss().cuda(gpu)
    # Regression loss coefficient
    alpha = args.alpha
 
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
 
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                   lr = args.lr)
 
    print 'Ready to train network.'
    for epoch in range(num_epochs):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images).cuda(gpu)
 
            # Binned labels
            label_yaw = Variable(labels[:,0]).cuda(gpu)
            label_pitch = Variable(labels[:,1]).cuda(gpu)
            label_roll = Variable(labels[:,2]).cuda(gpu)
 
            # Continuous labels
            label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu)
            label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu)
            label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu)
 
            # Forward pass
            pre_yaw, pre_pitch, pre_roll = model(images)
 
            # Cross entropy loss
            loss_yaw = criterion(pre_yaw, label_yaw)
            loss_pitch = criterion(pre_pitch, label_pitch)
            loss_roll = criterion(pre_roll, label_roll)
 
            # MSE loss
            yaw_predicted = softmax(pre_yaw)
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
 
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
 
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
 
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
 
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')