import os
|
import numpy as np
|
import cv2
|
import pandas as pd
|
|
import torch
|
from torch.utils.data.dataset import Dataset
|
from torchvision import transforms
|
|
from PIL import Image, ImageFilter
|
|
import utils
|
|
def get_list_from_filenames(file_path):
|
# input: relative path to .txt file with file names
|
# output: list of relative path names
|
with open(file_path) as f:
|
lines = f.read().splitlines()
|
return lines
|
|
class Synhead(Dataset):
|
def __init__(self, data_dir, csv_path, transform, test=False):
|
column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']
|
tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig")
|
self.data_dir = data_dir
|
self.transform = transform
|
self.X_train = tmp_df['path']
|
self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']]
|
self.length = len(tmp_df)
|
self.test = test
|
|
def __getitem__(self, index):
|
path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png'
|
img = Image.open(path)
|
img = img.convert('RGB')
|
|
x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index]
|
x_min = float(x_min); x_max = float(x_max)
|
y_min = float(y_min); y_max = float(y_max)
|
yaw = -float(yaw); pitch = float(pitch); roll = float(roll)
|
|
# k = 0.2 to 0.40
|
k = np.random.random_sample() * 0.2 + 0.2
|
x_min -= 0.6 * k * abs(x_max - x_min)
|
y_min -= 2 * k * abs(y_max - y_min)
|
x_max += 0.6 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
|
width, height = img.size
|
# Crop the face
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# Flip?
|
rnd = np.random.random_sample()
|
if rnd < 0.5:
|
yaw = -yaw
|
roll = -roll
|
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
|
# Blur?
|
rnd = np.random.random_sample()
|
if rnd < 0.05:
|
img = img.filter(ImageFilter.BLUR)
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
|
|
labels = torch.LongTensor(binned_pose)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
return self.length
|
|
class Pose_300W_LP(Dataset):
|
# Head pose from 300W-LP dataset
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
|
|
# Crop the face loosely
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
# k = 0.2 to 0.40
|
k = np.random.random_sample() * 0.2 + 0.2
|
x_min -= 0.6 * k * abs(x_max - x_min)
|
y_min -= 2 * k * abs(y_max - y_min)
|
x_max += 0.6 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(mat_path)
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
|
# Flip?
|
rnd = np.random.random_sample()
|
if rnd < 0.5:
|
yaw = -yaw
|
roll = -roll
|
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
|
# Blur?
|
rnd = np.random.random_sample()
|
if rnd < 0.05:
|
img = img.filter(ImageFilter.BLUR)
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
|
|
# Get shape
|
shape = np.load(shape_path)
|
|
# Get target tensors
|
labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class Pose_300W_LP_random_ds(Dataset):
|
# 300W-LP dataset with random downsampling
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
|
|
# Crop the face loosely
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
# k = 0.2 to 0.40
|
k = np.random.random_sample() * 0.2 + 0.2
|
x_min -= 0.6 * k * abs(x_max - x_min)
|
y_min -= 2 * k * abs(y_max - y_min)
|
x_max += 0.6 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# We get the pose in radians
|
pose = utils.get_ypr_fro # Head pose from AFLW2000 datasetp.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
|
ds = 1 + np.random.randint(0,4) * 5
|
original_size = img.size
|
img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
|
img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
|
|
# Flip?
|
rnd = np.random.random_sample()
|
if rnd < 0.5:
|
yaw = -yaw
|
roll = -roll
|
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
|
# Blur?
|
rnd = np.random.random_sample()
|
if rnd < 0.05:
|
img = img.filter(ImageFilter.BLUR)
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
|
|
# Get shape
|
shape = np.load(shape_path)
|
|
# Get target tensors
|
labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class AFLW2000(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# Crop the face loosely
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
k = 0.20
|
x_min -= 2 * k * abs(x_max - x_min)
|
y_min -= 2 * k * abs(y_max - y_min)
|
x_max += 2 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(mat_path)
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
class AFLW2000_ds(Dataset):
|
# AFLW2000 dataset with fixed downsampling
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# Crop the face loosely
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
k = 0.20
|
x_min -= 2 * k * abs(x_max - x_min)
|
y_min -= 2 * k * abs(y_max - y_min)
|
x_max += 2 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
ds = 3 # downsampling factor
|
original_size = img.size
|
img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
|
img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(mat_path)
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
class AFLW_aug(Dataset):
|
# AFLW dataset with flipping
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# We get the pose in radians
|
annot = open(txt_path, 'r')
|
line = annot.readline().split(' ')
|
pose = [float(line[1]), float(line[2]), float(line[3])]
|
# And convert to degrees.
|
yaw = pose[0] * 180 / np.pi
|
pitch = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Fix the roll in AFLW
|
roll *= -1
|
|
# Augment
|
# Flip?
|
rnd = np.random.random_sample()
|
if rnd < 0.5:
|
yaw = -yaw
|
roll = -roll
|
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# train: 18,863
|
# test: 1,966
|
return self.length
|
|
class AFLW(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# We get the pose in radians
|
annot = open(txt_path, 'r')
|
line = annot.readline().split(' ')
|
pose = [float(line[1]), float(line[2]), float(line[3])]
|
# And convert to degrees.
|
yaw = pose[0] * 180 / np.pi
|
pitch = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Fix the roll in AFLW
|
roll *= -1
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# train: 18,863
|
# test: 1,966
|
return self.length
|
|
class AFW(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
img_name = self.X_train[index].split('_')[0]
|
|
img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext))
|
img = img.convert(self.image_mode)
|
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# We get the pose in degrees
|
annot = open(txt_path, 'r')
|
line = annot.readline().split(' ')
|
yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
|
|
# Crop the face loosely
|
k = 0.32
|
x1 = float(line[4])
|
y1 = float(line[5])
|
x2 = float(line[6])
|
y2 = float(line[7])
|
x1 -= 0.8 * k * abs(x2 - x1)
|
y1 -= 2 * k * abs(y2 - y1)
|
x2 += 0.8 * k * abs(x2 - x1)
|
y2 += 1 * k * abs(y2 - y1)
|
|
img = img.crop((int(x1), int(y1), int(x2), int(y2)))
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# Around 200
|
return self.length
|
|
class BIWI(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext))
|
img = img.convert(self.image_mode)
|
pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext)
|
|
y_train_list = self.y_train[index].split('/')
|
bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext)
|
|
# Load bounding box
|
bbox = open(bbox_path, 'r')
|
line = bbox.readline().split(' ')
|
if len(line) < 4:
|
x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1]
|
else:
|
x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])]
|
bbox.close()
|
|
# Load pose in degrees
|
pose_annot = open(pose_path, 'r')
|
R = []
|
for line in pose_annot:
|
line = line.strip('\n').split(' ')
|
l = []
|
if line[0] != '':
|
for nb in line:
|
if nb == '':
|
continue
|
l.append(float(nb))
|
R.append(l)
|
|
R = np.array(R)
|
T = R[3,:]
|
R = R[:3,:]
|
pose_annot.close()
|
|
R = np.transpose(R)
|
|
roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
|
yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
|
pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
|
|
# Loosely crop face
|
k = 0.35
|
x_min -= 0.6 * k * abs(x_max - x_min)
|
y_min -= k * abs(y_max - y_min)
|
x_max += 0.6 * k * abs(x_max - x_min)
|
y_max += 0.6 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
|
|
labels = torch.LongTensor(binned_pose)
|
cont_labels = torch.FloatTensor([yaw, pitch, roll])
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, cont_labels, self.X_train[index]
|
|
def __len__(self):
|
# 15,667
|
return self.length
|