import torch
|
import torch.nn as nn
|
from torch.autograd import Variable
|
import math
|
import torch.nn.functional as F
|
|
# CNN Model (2 conv layer)
|
class Simple_CNN(nn.Module):
|
def __init__(self):
|
super(Simple_CNN, self).__init__()
|
self.layer1 = nn.Sequential(
|
nn.Conv2d(3, 64, kernel_size=3, padding=0),
|
nn.BatchNorm2d(64),
|
nn.ReLU(),
|
nn.MaxPool2d(2))
|
self.layer2 = nn.Sequential(
|
nn.Conv2d(64, 128, kernel_size=3, padding=0),
|
nn.BatchNorm2d(128),
|
nn.ReLU(),
|
nn.MaxPool2d(2))
|
self.layer3 = nn.Sequential(
|
nn.Conv2d(128, 256, kernel_size=3, padding=0),
|
nn.BatchNorm2d(256),
|
nn.ReLU(),
|
nn.MaxPool2d(2))
|
self.layer4 = nn.Sequential(
|
nn.Conv2d(256, 512, kernel_size=3, padding=0),
|
nn.BatchNorm2d(512),
|
nn.ReLU(),
|
nn.MaxPool2d(2))
|
self.fc = nn.Linear(17*17*512, 3)
|
|
def forward(self, x):
|
out = self.layer1(x)
|
out = self.layer2(out)
|
out = self.layer3(out)
|
out = self.layer4(out)
|
out = out.view(out.size(0), -1)
|
out = self.fc(out)
|
return out
|
|
class Hopenet(nn.Module):
|
# This is just Hopenet with 3 output layers for yaw, pitch and roll.
|
def __init__(self, block, layers, num_bins, iter_ref):
|
self.inplanes = 64
|
super(Hopenet, self).__init__()
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
bias=False)
|
self.bn1 = nn.BatchNorm2d(64)
|
self.relu = nn.ReLU(inplace=True)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
self.avgpool = nn.AvgPool2d(7)
|
self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
|
self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
|
self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
|
|
self.softmax = nn.Softmax()
|
self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
|
|
self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
|
|
self.iter_ref = iter_ref
|
|
for m in self.modules():
|
if isinstance(m, nn.Conv2d):
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
elif isinstance(m, nn.BatchNorm2d):
|
m.weight.data.fill_(1)
|
m.bias.data.zero_()
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
downsample = None
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
downsample = nn.Sequential(
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
kernel_size=1, stride=stride, bias=False),
|
nn.BatchNorm2d(planes * block.expansion),
|
)
|
|
layers = []
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
self.inplanes = planes * block.expansion
|
for i in range(1, blocks):
|
layers.append(block(self.inplanes, planes))
|
|
return nn.Sequential(*layers)
|
|
def forward(self, x):
|
x = self.conv1(x)
|
x = self.bn1(x)
|
x = self.relu(x)
|
x = self.maxpool(x)
|
|
x = self.layer1(x)
|
x = self.layer2(x)
|
x = self.layer3(x)
|
x = self.layer4(x)
|
|
x = self.avgpool(x)
|
x = x.view(x.size(0), -1)
|
pre_yaw = self.fc_yaw(x)
|
pre_pitch = self.fc_pitch(x)
|
pre_roll = self.fc_roll(x)
|
|
yaw = self.softmax(pre_yaw)
|
yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
|
pitch = self.softmax(pre_pitch)
|
pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
|
roll = self.softmax(pre_roll)
|
roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
|
yaw = yaw.view(yaw.size(0), 1)
|
pitch = pitch.view(pitch.size(0), 1)
|
roll = roll.view(roll.size(0), 1)
|
angles = []
|
preangles = torch.cat([yaw, pitch, roll], 1)
|
angles.append(preangles)
|
|
# angles predicts the residual
|
for idx in xrange(self.iter_ref):
|
angles.append(self.fc_finetune(torch.cat((preangles, x), 1)))
|
|
return pre_yaw, pre_pitch, pre_roll, angles
|
|
class Hopenet_shape(nn.Module):
|
# This is just Hopenet with 3 output layers for yaw, pitch and roll.
|
def __init__(self, block, layers, num_bins, shape_bins):
|
self.inplanes = 64
|
super(Hopenet_shape, self).__init__()
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
bias=False)
|
self.bn1 = nn.BatchNorm2d(64)
|
self.relu = nn.ReLU(inplace=True)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
self.avgpool = nn.AvgPool2d(7)
|
self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
|
self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
|
self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
|
self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins)
|
self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins)
|
|
for m in self.modules():
|
if isinstance(m, nn.Conv2d):
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
elif isinstance(m, nn.BatchNorm2d):
|
m.weight.data.fill_(1)
|
m.bias.data.zero_()
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
downsample = None
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
downsample = nn.Sequential(
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
kernel_size=1, stride=stride, bias=False),
|
nn.BatchNorm2d(planes * block.expansion),
|
)
|
|
layers = []
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
self.inplanes = planes * block.expansion
|
for i in range(1, blocks):
|
layers.append(block(self.inplanes, planes))
|
|
return nn.Sequential(*layers)
|
|
def forward(self, x):
|
x = self.conv1(x)
|
x = self.bn1(x)
|
x = self.relu(x)
|
x = self.maxpool(x)
|
|
x = self.layer1(x)
|
x = self.layer2(x)
|
x = self.layer3(x)
|
x = self.layer4(x)
|
|
x = self.avgpool(x)
|
x = x.view(x.size(0), -1)
|
yaw = self.fc_yaw(x)
|
pitch = self.fc_pitch(x)
|
roll = self.fc_roll(x)
|
|
shape = []
|
shape.append(self.fc_shape_0(x))
|
shape.append(self.fc_shape_1(x))
|
shape.append(self.fc_shape_2(x))
|
shape.append(self.fc_shape_3(x))
|
shape.append(self.fc_shape_4(x))
|
shape.append(self.fc_shape_5(x))
|
shape.append(self.fc_shape_6(x))
|
shape.append(self.fc_shape_7(x))
|
shape.append(self.fc_shape_8(x))
|
shape.append(self.fc_shape_9(x))
|
|
return yaw, pitch, roll, shape
|