import numpy as np
|
import torch
|
import cv2
|
from torch.utils.data.dataset import Dataset
|
import os
|
from PIL import Image
|
|
import utils
|
|
def stack_grayscale_tensor(tensor):
|
tensor = torch.cat([tensor, tensor, tensor], 0)
|
return tensor
|
|
class Pose_300W_LP(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
label = torch.FloatTensor(pose)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, label, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class AFLW2000(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert('RGB')
|
|
pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
|
label = torch.FloatTensor(pose)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, label, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
class Pose_300W_LP_binned(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
|
|
# Crop the face
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
k = 0.15
|
x_min -= k * abs(x_max - x_min)
|
y_min -= 4 * k * abs(y_max - y_min)
|
x_max += k * abs(x_max - x_min)
|
y_max += 0.4 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(mat_path)
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
|
|
# Get shape
|
shape = np.load(shape_path)
|
|
labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, self.X_train[index]
|
|
def __len__(self):
|
# 122,450
|
return self.length
|
|
class AFLW2000_binned(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# Crop the face
|
pt2d = utils.get_pt2d_from_mat(mat_path)
|
x_min = min(pt2d[0,:])
|
y_min = min(pt2d[1,:])
|
x_max = max(pt2d[0,:])
|
y_max = max(pt2d[1,:])
|
|
k = 0.15
|
x_min -= k * abs(x_max - x_min)
|
y_min -= 4 * k * abs(y_max - y_min)
|
x_max += k * abs(x_max - x_min)
|
y_max += 0.4 * k * abs(y_max - y_min)
|
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
|
|
# We get the pose in radians
|
pose = utils.get_ypr_from_mat(mat_path)
|
# And convert to degrees.
|
pitch = pose[0] * 180 / np.pi
|
yaw = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, self.X_train[index]
|
|
def __len__(self):
|
# 2,000
|
return self.length
|
|
class AFLW(Dataset):
|
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
|
self.data_dir = data_dir
|
self.transform = transform
|
self.img_ext = img_ext
|
self.annot_ext = annot_ext
|
|
filename_list = get_list_from_filenames(filename_path)
|
|
self.X_train = filename_list
|
self.y_train = filename_list
|
self.image_mode = image_mode
|
self.length = len(filename_list)
|
|
def __getitem__(self, index):
|
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
|
img = img.convert(self.image_mode)
|
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
|
|
# We get the pose in radians
|
annot = open(txt_path, 'r')
|
line = annot.readline().split(' ')
|
pose = [float(line[1]), float(line[2]), float(line[3])]
|
# And convert to degrees.
|
yaw = pose[0] * 180 / np.pi
|
pitch = pose[1] * 180 / np.pi
|
roll = pose[2] * 180 / np.pi
|
# Bin values
|
bins = np.array(range(-99, 102, 3))
|
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
|
|
if self.transform is not None:
|
img = self.transform(img)
|
|
return img, labels, self.X_train[index]
|
|
def __len__(self):
|
# Check how many
|
return self.length
|
|
def get_list_from_filenames(file_path):
|
# input: relative path to .txt file with file names
|
# output: list of relative path names
|
with open(file_path) as f:
|
lines = f.read().splitlines()
|
return lines
|