import numpy as np
|
import torch
|
import torch.nn as nn
|
from torch.autograd import Variable
|
from torch.utils.data import DataLoader
|
from torchvision import transforms
|
import torchvision
|
import torch.backends.cudnn as cudnn
|
|
import cv2
|
import matplotlib.pyplot as plt
|
import sys
|
import os
|
import argparse
|
|
from datasets import Pose_300W_LP
|
import hopenet
|
|
def parse_args():
|
"""Parse input arguments."""
|
parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
|
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
|
default=0, type=int)
|
parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
|
default=5, type=int)
|
parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
|
default=16, type=int)
|
parser.add_argument('--lr', dest='lr', help='Base learning rate.',
|
default=0.001, type=float)
|
parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
|
default='', type=str)
|
parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
|
default='', type=str)
|
|
args = parser.parse_args()
|
|
return args
|
|
if __name__ == '__main__':
|
args = parse_args()
|
|
cudnn.enabled = True
|
num_epochs = args.num_epochs
|
batch_size = args.batch_size
|
gpu = args.gpu_id
|
|
if not os.path.exists('output/snapshots'):
|
os.makedirs('output/snapshots')
|
|
model = torchvision.models.resnet18(pretrained=True)
|
# for param in model.parameters():
|
# param.requires_grad = False
|
# Parameters of newly constructed modules have requires_grad=True by default
|
num_ftrs = model.fc.in_features
|
model.fc = nn.Linear(num_ftrs, 3)
|
|
print 'Loading data.'
|
|
transformations = transforms.Compose([transforms.Scale(230),transforms.RandomCrop(224),
|
transforms.ToTensor()])
|
|
pose_dataset = Pose_300W_LP(args.data_dir, args.filename_list,
|
transformations)
|
train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
|
batch_size=batch_size,
|
shuffle=True,
|
num_workers=2)
|
|
model.cuda(gpu)
|
criterion = nn.MSELoss(size_average = True)
|
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr)
|
|
print 'Ready to train network.'
|
|
for epoch in range(num_epochs):
|
for i, (images, labels) in enumerate(train_loader):
|
images = Variable(images).cuda(gpu)
|
labels = Variable(labels).cuda(gpu)
|
|
optimizer.zero_grad()
|
outputs = model(images)
|
loss = criterion(outputs, labels)
|
loss.backward()
|
optimizer.step()
|
|
if (i+1) % 100 == 0:
|
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
|
%(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0]))
|
|
# Save models at even numbered epochs.
|
if epoch % 1 == 0 and epoch < num_epochs - 1:
|
print 'Taking snapshot...'
|
torch.save(model.state_dict(),
|
'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl')
|
|
# Save the final Trained Model
|
torch.save(model.state_dict(), 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl')
|