natanielruiz
2017-09-23 d9781608243c42d55ced0c1d529f25eb30aeceb9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
 
import cv2
import matplotlib.pyplot as plt
import sys
import os
import argparse
 
import datasets
import hopenet
import torch.utils.model_zoo as model_zoo
 
import time
 
model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
 
def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
            default=0, type=int)
    parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
          default=5, type=int)
    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
          default=16, type=int)
    parser.add_argument('--lr', dest='lr', help='Base learning rate.',
          default=0.001, type=float)
    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
          default='', type=str)
    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
          default='', type=str)
    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
 
    args = parser.parse_args()
    return args
 
def get_ignored_params(model):
    # Generator function that yields ignored params.
    b = []
    b.append(model.conv1)
    b.append(model.bn1)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
 
def get_non_ignored_params(model):
    # Generator function that yields params that will be optimized.
    b = []
    b.append(model.layer1)
    b.append(model.layer2)
    b.append(model.layer3)
    b.append(model.layer4)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            if 'bn' in module_name:
                module.eval()
            for name, param in module.named_parameters():
                yield param
 
def get_fc_params(model):
    b = []
    b.append(model.fc_angles)
    for i in range(len(b)):
        for module_name, module in b[i].named_modules():
            for name, param in module.named_parameters():
                yield param
 
def load_filtered_state_dict(model, snapshot):
    # By user apaszke from discuss.pytorch.org
    model_dict = model.state_dict()
    # 1. filter out unnecessary keys
    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
    # 2. overwrite entries in the existing state dict
    model_dict.update(snapshot)
    # 3. load the new state dict
    model.load_state_dict(model_dict)
 
if __name__ == '__main__':
    args = parse_args()
 
    cudnn.enabled = True
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    gpu = args.gpu_id
 
    if not os.path.exists('output/snapshots'):
        os.makedirs('output/snapshots')
 
    # ResNet50
    model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3)
 
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
 
    print 'Loading data.'
 
    transformations = transforms.Compose([transforms.Scale(240),
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=2)
 
    model.cuda(gpu)
    criterion = nn.MSELoss().cuda(gpu)
 
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                   lr = args.lr)
 
    print 'Ready to train network.'
    print 'First phase of training.'
    for epoch in range(num_epochs):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images).cuda(gpu)
 
            label_angles = Variable(cont_labels[:,:3]).cuda(gpu)
 
            optimizer.zero_grad()
            model.zero_grad()
 
            angles = model(images)
 
            loss = criterion(angles, label_angles)
 
            loss.backward()
            optimizer.step()
 
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0]))
                # if epoch == 0:
                #     torch.save(model.state_dict(),
                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')