import numpy as np
|
import torch
|
import torch.nn as nn
|
from torch.autograd import Variable
|
from torch.utils.data import DataLoader
|
from torchvision import transforms
|
import torchvision
|
import torch.backends.cudnn as cudnn
|
import torch.nn.functional as F
|
|
import cv2
|
import matplotlib.pyplot as plt
|
import sys
|
import os
|
import argparse
|
|
import datasets
|
import hopenet
|
import torch.utils.model_zoo as model_zoo
|
|
model_urls = {
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
}
|
|
def parse_args():
|
"""Parse input arguments."""
|
parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
|
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
|
default=0, type=int)
|
parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
|
default=5, type=int)
|
parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
|
default=16, type=int)
|
parser.add_argument('--lr', dest='lr', help='Base learning rate.',
|
default=0.001, type=float)
|
parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
|
default='', type=str)
|
parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
|
default='', type=str)
|
parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
|
parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
|
default=0.001, type=float)
|
parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
|
default=1, type=int)
|
parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
|
parser.add_argument('--snapshot', dest='snapshot', help='Snapshot to start finetuning', default='', type=str)
|
args = parser.parse_args()
|
return args
|
|
def get_ignored_params(model):
|
# Generator function that yields ignored params.
|
b = []
|
b.append(model.conv1)
|
b.append(model.bn1)
|
b.append(model.layer1)
|
b.append(model.layer2)
|
b.append(model.layer3)
|
b.append(model.layer4)
|
b.append(model.fc_yaw)
|
b.append(model.fc_pitch)
|
b.append(model.fc_roll)
|
for i in range(len(b)):
|
for module_name, module in b[i].named_modules():
|
if 'bn' in module_name:
|
module.eval()
|
for name, param in module.named_parameters():
|
yield param
|
|
def get_non_ignored_params(model):
|
# Generator function that yields params that will be optimized.
|
b = []
|
b.append(model.conv1x1)
|
for i in range(len(b)):
|
for module_name, module in b[i].named_modules():
|
if 'bn' in module_name:
|
module.eval()
|
for name, param in module.named_parameters():
|
yield param
|
|
def get_fc_params(model):
|
b = []
|
b.append(model.fc_finetune_new)
|
for i in range(len(b)):
|
for module_name, module in b[i].named_modules():
|
for name, param in module.named_parameters():
|
yield param
|
|
def load_filtered_state_dict(model, snapshot):
|
# By user apaszke from discuss.pytorch.org
|
model_dict = model.state_dict()
|
# 1. filter out unnecessary keys
|
snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
|
# 2. overwrite entries in the existing state dict
|
model_dict.update(snapshot)
|
# 3. load the new state dict
|
model.load_state_dict(model_dict)
|
|
if __name__ == '__main__':
|
args = parse_args()
|
|
cudnn.enabled = True
|
num_epochs_ft = args.num_epochs_ft
|
batch_size = args.batch_size
|
gpu = args.gpu_id
|
|
if not os.path.exists('output/snapshots'):
|
os.makedirs('output/snapshots')
|
|
|
model = hopenet.Hopenet_new(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
|
|
if args.snapshot != '':
|
load_filtered_state_dict(model, torch.load(args.snapshot))
|
else:
|
load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
|
|
print 'Loading data.'
|
|
transformations = transforms.Compose([transforms.Scale(240),
|
transforms.RandomCrop(224), transforms.ToTensor(),
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
|
if args.dataset == 'Pose_300W_LP':
|
pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
|
elif args.dataset == 'AFLW2000':
|
pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
|
elif args.dataset == 'BIWI':
|
pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
|
elif args.dataset == 'AFLW':
|
pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
|
elif args.dataset == 'AFLW_aug':
|
pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
|
elif args.dataset == 'AFW':
|
pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
|
else:
|
print 'Error: not a valid dataset name'
|
sys.exit()
|
train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
|
batch_size=batch_size,
|
shuffle=True,
|
num_workers=2)
|
|
model.cuda(gpu)
|
softmax = nn.Softmax()
|
criterion = nn.CrossEntropyLoss().cuda()
|
reg_criterion = nn.MSELoss().cuda()
|
smooth_l1_loss = nn.SmoothL1Loss().cuda()
|
# Regression loss coefficient
|
alpha = args.alpha
|
|
optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
|
{'params': get_non_ignored_params(model), 'lr': args.lr},
|
{'params': get_fc_params(model), 'lr': args.lr}],
|
lr = args.lr)
|
|
print 'Ready to train network.'
|
|
print 'Second phase of training (finetuning layer).'
|
for epoch in range(num_epochs_ft):
|
for i, (images, labels, cont_labels, name) in enumerate(train_loader):
|
images = Variable(images.cuda(gpu))
|
|
label_angles = Variable(cont_labels[:,:3].cuda(gpu))
|
|
optimizer.zero_grad()
|
model.zero_grad()
|
|
pre_yaw, pre_pitch, pre_roll, preangles, final_angles = model(images)
|
|
# Finetuning loss
|
loss_seq = []
|
|
loss_angles = smooth_l1_loss(final_angles, label_angles)
|
loss_seq.append(loss_angles)
|
|
grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
|
torch.autograd.backward(loss_seq, grad_seq)
|
optimizer.step()
|
|
if (i+1) % 100 == 0:
|
print ('Epoch [%d/%d], Iter [%d/%d] Losses: finetuning %.4f'
|
%(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_angles.data[0]))
|
|
# Save models at numbered epochs.
|
if epoch % 1 == 0 and epoch < num_epochs_ft:
|
print 'Taking snapshot...'
|
torch.save(model.state_dict(),
|
'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
|