Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""
 
import numpy as np
import torch
from PIL import Image, ImageOps, ImageEnhance
 
 
def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
 
    See ``ToTensor`` for more details.
 
    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
 
    Returns:
        Tensor: Converted image.
    """
    if isinstance(pic, np.ndarray):
        assert len(pic.shape) in (2, 3)
        # handle numpy array
        if pic.ndim == 2:
            pic = pic[:, :, None]
 
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img
 
    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
    # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    if isinstance(img, torch.ByteTensor):
        return img.float()
    else:
        return img
 
 
def int_parameter(level, maxval):
    """Helper function to scale `val` between 0 and maxval .
    Args:
      level: Level of the operation that will be between [0, `PARAMETER_MAX`].
      maxval: Maximum value that the operation can have. This will be scaled to
        level/PARAMETER_MAX.
    Returns:
      An int that results from scaling `maxval` according to `level`.
    """
    return int(level * maxval / 10)
 
 
def float_parameter(level, maxval):
    """Helper function to scale `val` between 0 and maxval.
    Args:
      level: Level of the operation that will be between [0, `PARAMETER_MAX`].
      maxval: Maximum value that the operation can have. This will be scaled to
        level/PARAMETER_MAX.
    Returns:
      A float that results from scaling `maxval` according to `level`.
    """
    return float(level) * maxval / 10.
 
 
def sample_level(n):
    return np.random.uniform(low=0.1, high=n)
 
 
def autocontrast(pil_img, *args):
    return ImageOps.autocontrast(pil_img)
 
 
def equalize(pil_img, *args):
    return ImageOps.equalize(pil_img)
 
 
def posterize(pil_img, level, *args):
    level = int_parameter(sample_level(level), 4)
    return ImageOps.posterize(pil_img, 4 - level)
 
 
def rotate(pil_img, level, *args):
    degrees = int_parameter(sample_level(level), 30)
    if np.random.uniform() > 0.5:
        degrees = -degrees
    return pil_img.rotate(degrees, resample=Image.BILINEAR)
 
 
def solarize(pil_img, level, *args):
    level = int_parameter(sample_level(level), 256)
    return ImageOps.solarize(pil_img, 256 - level)
 
 
def shear_x(pil_img, level, image_size):
    level = float_parameter(sample_level(level), 0.3)
    if np.random.uniform() > 0.5:
        level = -level
    return pil_img.transform(image_size,
                             Image.AFFINE, (1, level, 0, 0, 1, 0),
                             resample=Image.BILINEAR)
 
 
def shear_y(pil_img, level, image_size):
    level = float_parameter(sample_level(level), 0.3)
    if np.random.uniform() > 0.5:
        level = -level
    return pil_img.transform(image_size,
                             Image.AFFINE, (1, 0, 0, level, 1, 0),
                             resample=Image.BILINEAR)
 
 
def translate_x(pil_img, level, image_size):
    level = int_parameter(sample_level(level), image_size[0] / 3)
    if np.random.random() > 0.5:
        level = -level
    return pil_img.transform(image_size,
                             Image.AFFINE, (1, 0, level, 0, 1, 0),
                             resample=Image.BILINEAR)
 
 
def translate_y(pil_img, level, image_size):
    level = int_parameter(sample_level(level), image_size[1] / 3)
    if np.random.random() > 0.5:
        level = -level
    return pil_img.transform(image_size,
                             Image.AFFINE, (1, 0, 0, 0, 1, level),
                             resample=Image.BILINEAR)
 
 
# operation that overlaps with ImageNet-C's test set
def color(pil_img, level, *args):
    level = float_parameter(sample_level(level), 1.8) + 0.1
    return ImageEnhance.Color(pil_img).enhance(level)
 
 
# operation that overlaps with ImageNet-C's test set
def contrast(pil_img, level, *args):
    level = float_parameter(sample_level(level), 1.8) + 0.1
    return ImageEnhance.Contrast(pil_img).enhance(level)
 
 
# operation that overlaps with ImageNet-C's test set
def brightness(pil_img, level, *args):
    level = float_parameter(sample_level(level), 1.8) + 0.1
    return ImageEnhance.Brightness(pil_img).enhance(level)
 
 
# operation that overlaps with ImageNet-C's test set
def sharpness(pil_img, level, *args):
    level = float_parameter(sample_level(level), 1.8) + 0.1
    return ImageEnhance.Sharpness(pil_img).enhance(level)
 
 
augmentations_reid = [
    autocontrast, equalize, posterize, shear_x, shear_y,
    color, contrast, brightness, sharpness
]
 
augmentations = [
    autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
    translate_x, translate_y
]
 
augmentations_all = [
    autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y,
    translate_x, translate_y, color, contrast, brightness, sharpness
]