Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""
 
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
 
 
class Circle(nn.Module):
    def __init__(self, cfg, in_feat, num_classes):
        super().__init__()
        self.in_feat = in_feat
        self._num_classes = num_classes
        self._s = cfg.MODEL.HEADS.SCALE
        self._m = cfg.MODEL.HEADS.MARGIN
 
        self.weight = Parameter(torch.Tensor(num_classes, in_feat))
 
    def forward(self, features, targets):
        sim_mat = F.linear(F.normalize(features), F.normalize(self.weight))
        alpha_p = F.relu(-sim_mat.detach() + 1 + self._m)
        alpha_n = F.relu(sim_mat.detach() + self._m)
        delta_p = 1 - self._m
        delta_n = self._m
 
        s_p = self._s * alpha_p * (sim_mat - delta_p)
        s_n = self._s * alpha_n * (sim_mat - delta_n)
 
        targets = F.one_hot(targets, num_classes=self._num_classes)
 
        pred_class_logits = targets * s_p + (1.0 - targets) * s_n
 
        return pred_class_logits
 
    def extra_repr(self):
        return 'in_features={}, num_classes={}, scale={}, margin={}'.format(
            self.in_feat, self._num_classes, self._s, self._m
        )