Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# encoding: utf-8
# based on:
# https://github.com/zhanghang1989/ResNeSt/blob/master/resnest/torch/resnest.py
"""ResNeSt models"""
 
import logging
import math
 
import torch
from torch import nn
 
from layers import (
    IBN,
    Non_local,
    SplAtConv2d,
    get_norm,
)
 
from utils.checkpoint import get_unexpected_parameters_message, get_missing_parameters_message
 
from .build import BACKBONE_REGISTRY
 
_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth'
 
_model_sha256 = {name: checksum for checksum, name in [
    ('528c19ca', 'resnest50'),
    ('22405ba7', 'resnest101'),
    ('75117900', 'resnest200'),
    ('0cc87c48', 'resnest269'),
]}
 
 
def short_hash(name):
    if name not in _model_sha256:
        raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
    return _model_sha256[name][:8]
 
 
model_urls = {name: _url_format.format(name, short_hash(name)) for
              name in _model_sha256.keys()
              }
 
 
class Bottleneck(nn.Module):
    """ResNet Bottleneck
    """
    # pylint: disable=unused-argument
    expansion = 4
 
    def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn=False, stride=1, downsample=None,
                 radix=1, cardinality=1, bottleneck_width=64,
                 avd=False, avd_first=False, dilation=1, is_first=False,
                 rectified_conv=False, rectify_avg=False,
                 dropblock_prob=0.0, last_gamma=False):
        super(Bottleneck, self).__init__()
        group_width = int(planes * (bottleneck_width / 64.)) * cardinality
        self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
        if with_ibn:
            self.bn1 = IBN(group_width, bn_norm, num_splits)
        else:
            self.bn1 = get_norm(bn_norm, group_width, num_splits)
        self.dropblock_prob = dropblock_prob
        self.radix = radix
        self.avd = avd and (stride > 1 or is_first)
        self.avd_first = avd_first
 
        if self.avd:
            self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
            stride = 1
 
        if radix > 1:
            self.conv2 = SplAtConv2d(
                group_width, group_width, kernel_size=3,
                stride=stride, padding=dilation,
                dilation=dilation, groups=cardinality, bias=False,
                radix=radix, rectify=rectified_conv,
                rectify_avg=rectify_avg,
                norm_layer=bn_norm, num_splits=num_splits,
                dropblock_prob=dropblock_prob)
        elif rectified_conv:
            from rfconv import RFConv2d
            self.conv2 = RFConv2d(
                group_width, group_width, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation,
                groups=cardinality, bias=False,
                average_mode=rectify_avg)
            self.bn2 = get_norm(bn_norm, group_width, num_splits)
        else:
            self.conv2 = nn.Conv2d(
                group_width, group_width, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation,
                groups=cardinality, bias=False)
            self.bn2 = get_norm(bn_norm, group_width, num_splits)
 
        self.conv3 = nn.Conv2d(
            group_width, planes * 4, kernel_size=1, bias=False)
        self.bn3 = get_norm(bn_norm, planes * 4, num_splits)
 
        if last_gamma:
            from torch.nn.init import zeros_
            zeros_(self.bn3.weight)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride
 
    def forward(self, x):
        residual = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        if self.dropblock_prob > 0.0:
            out = self.dropblock1(out)
        out = self.relu(out)
 
        if self.avd and self.avd_first:
            out = self.avd_layer(out)
 
        out = self.conv2(out)
        if self.radix == 1:
            out = self.bn2(out)
            if self.dropblock_prob > 0.0:
                out = self.dropblock2(out)
            out = self.relu(out)
 
        if self.avd and not self.avd_first:
            out = self.avd_layer(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        if self.dropblock_prob > 0.0:
            out = self.dropblock3(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ResNest(nn.Module):
    """ResNet Variants ResNest
    Parameters
    ----------
    block : Block
        Class for the residual block. Options are BasicBlockV1, BottleneckV1.
    layers : list of int
        Numbers of layers in each block
    classes : int, default 1000
        Number of classification classes.
    dilated : bool, default False
        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
        typically used in Semantic Segmentation.
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
        for Synchronized Cross-GPU BachNormalization).
    Reference:
        - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
    """
 
    # pylint: disable=unused-variable
    def __init__(self, last_stride, bn_norm, num_splits, with_ibn, with_nl, block, layers, non_layers, radix=1, groups=1,
                 bottleneck_width=64,
                 dilated=False, dilation=1,
                 deep_stem=False, stem_width=64, avg_down=False,
                 rectified_conv=False, rectify_avg=False,
                 avd=False, avd_first=False,
                 final_drop=0.0, dropblock_prob=0,
                 last_gamma=False):
        self.cardinality = groups
        self.bottleneck_width = bottleneck_width
        # ResNet-D params
        self.inplanes = stem_width * 2 if deep_stem else 64
        self.avg_down = avg_down
        self.last_gamma = last_gamma
        # ResNeSt params
        self.radix = radix
        self.avd = avd
        self.avd_first = avd_first
 
        super().__init__()
        self.rectified_conv = rectified_conv
        self.rectify_avg = rectify_avg
        if rectified_conv:
            from rfconv import RFConv2d
            conv_layer = RFConv2d
        else:
            conv_layer = nn.Conv2d
        conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {}
        if deep_stem:
            self.conv1 = nn.Sequential(
                conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs),
                get_norm(bn_norm, stem_width, num_splits),
                nn.ReLU(inplace=True),
                conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
                get_norm(bn_norm, stem_width, num_splits),
                nn.ReLU(inplace=True),
                conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs),
            )
        else:
            self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
                                    bias=False, **conv_kwargs)
        self.bn1 = get_norm(bn_norm, self.inplanes, num_splits)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, num_splits, with_ibn=with_ibn, is_first=False)
        self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, num_splits, with_ibn=with_ibn)
        if dilated or dilation == 4:
            self.layer3 = self._make_layer(block, 256, layers[2], 1, bn_norm, num_splits, with_ibn=with_ibn,
                                           dilation=2, dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], 1, bn_norm, num_splits, with_ibn=with_ibn,
                                           dilation=4, dropblock_prob=dropblock_prob)
        elif dilation == 2:
            self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn=with_ibn,
                                           dilation=1, dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], 1, bn_norm, num_splits, with_ibn=with_ibn,
                                           dilation=2, dropblock_prob=dropblock_prob)
        else:
            self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn=with_ibn,
                                           dropblock_prob=dropblock_prob)
            self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, num_splits, with_ibn=with_ibn,
                                           dropblock_prob=dropblock_prob)
 
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
 
        if with_nl:
            self._build_nonlocal(layers, non_layers, bn_norm, num_splits)
        else:
            self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
 
    def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", num_splits=1, with_ibn=False,
                    dilation=1, dropblock_prob=0.0, is_first=True):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            down_layers = []
            if self.avg_down:
                if dilation == 1:
                    down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
                                                    ceil_mode=True, count_include_pad=False))
                else:
                    down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
                                                    ceil_mode=True, count_include_pad=False))
                down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
                                             kernel_size=1, stride=1, bias=False))
            else:
                down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
                                             kernel_size=1, stride=stride, bias=False))
            down_layers.append(get_norm(bn_norm, planes * block.expansion, num_splits))
            downsample = nn.Sequential(*down_layers)
 
        layers = []
        if planes == 512:
            with_ibn = False
        if dilation == 1 or dilation == 2:
            layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn, stride, downsample=downsample,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=1, is_first=is_first, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))
        elif dilation == 4:
            layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn, stride, downsample=downsample,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=2, is_first=is_first, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))
        else:
            raise RuntimeError("=> unknown dilation size: {}".format(dilation))
 
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn,
                                radix=self.radix, cardinality=self.cardinality,
                                bottleneck_width=self.bottleneck_width,
                                avd=self.avd, avd_first=self.avd_first,
                                dilation=dilation, rectified_conv=self.rectified_conv,
                                rectify_avg=self.rectify_avg,
                                dropblock_prob=dropblock_prob,
                                last_gamma=self.last_gamma))
 
        return nn.Sequential(*layers)
 
    def _build_nonlocal(self, layers, non_layers, bn_norm, num_splits):
        self.NL_1 = nn.ModuleList(
            [Non_local(256, bn_norm, num_splits) for _ in range(non_layers[0])])
        self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
        self.NL_2 = nn.ModuleList(
            [Non_local(512, bn_norm, num_splits) for _ in range(non_layers[1])])
        self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
        self.NL_3 = nn.ModuleList(
            [Non_local(1024, bn_norm, num_splits) for _ in range(non_layers[2])])
        self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
        self.NL_4 = nn.ModuleList(
            [Non_local(2048, bn_norm, num_splits) for _ in range(non_layers[3])])
        self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        NL1_counter = 0
        if len(self.NL_1_idx) == 0:
            self.NL_1_idx = [-1]
        for i in range(len(self.layer1)):
            x = self.layer1[i](x)
            if i == self.NL_1_idx[NL1_counter]:
                _, C, H, W = x.shape
                x = self.NL_1[NL1_counter](x)
                NL1_counter += 1
        # Layer 2
        NL2_counter = 0
        if len(self.NL_2_idx) == 0:
            self.NL_2_idx = [-1]
        for i in range(len(self.layer2)):
            x = self.layer2[i](x)
            if i == self.NL_2_idx[NL2_counter]:
                _, C, H, W = x.shape
                x = self.NL_2[NL2_counter](x)
                NL2_counter += 1
        # Layer 3
        NL3_counter = 0
        if len(self.NL_3_idx) == 0:
            self.NL_3_idx = [-1]
        for i in range(len(self.layer3)):
            x = self.layer3[i](x)
            if i == self.NL_3_idx[NL3_counter]:
                _, C, H, W = x.shape
                x = self.NL_3[NL3_counter](x)
                NL3_counter += 1
        # Layer 4
        NL4_counter = 0
        if len(self.NL_4_idx) == 0:
            self.NL_4_idx = [-1]
        for i in range(len(self.layer4)):
            x = self.layer4[i](x)
            if i == self.NL_4_idx[NL4_counter]:
                _, C, H, W = x.shape
                x = self.NL_4[NL4_counter](x)
                NL4_counter += 1
 
        return x
 
 
@BACKBONE_REGISTRY.register()
def build_resnest_backbone(cfg):
    """
    Create a ResNest instance from config.
    Returns:
        ResNet: a :class:`ResNet` instance.
    """
 
    # fmt: off
    pretrain = cfg.MODEL.BACKBONE.PRETRAIN
    last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
    bn_norm = cfg.MODEL.BACKBONE.NORM
    num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT
    with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
    with_se = cfg.MODEL.BACKBONE.WITH_SE
    with_nl = cfg.MODEL.BACKBONE.WITH_NL
    depth = cfg.MODEL.BACKBONE.DEPTH
 
    num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 200: [3, 24, 36, 3], 269: [3, 30, 48, 8]}[depth]
    nl_layers_per_stage = {50: [0, 2, 3, 0], 101: [0, 2, 3, 0]}[depth]
    stem_width = {50: 32, 101: 64, 200: 64, 269: 64}[depth]
    model = ResNest(last_stride, bn_norm, num_splits, with_ibn, with_nl, Bottleneck, num_blocks_per_stage,
                    nl_layers_per_stage, radix=2, groups=1, bottleneck_width=64,
                    deep_stem=True, stem_width=stem_width, avg_down=True,
                    avd=True, avd_first=False)
    if pretrain:
        # if not with_ibn:
        # original resnet
        state_dict = torch.hub.load_state_dict_from_url(
            model_urls['resnest' + str(depth)], progress=True, check_hash=True)
        # else:
        #     raise KeyError('Not implementation ibn in resnest')
        # # ibn resnet
        # state_dict = torch.load(pretrain_path)['state_dict']
        # # remove module in name
        # new_state_dict = {}
        # for k in state_dict:
        #     new_k = '.'.join(k.split('.')[1:])
        #     if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
        #         new_state_dict[new_k] = state_dict[k]
        # state_dict = new_state_dict
        incompatible = model.load_state_dict(state_dict, strict=False)
        logger = logging.getLogger(__name__)
        if incompatible.missing_keys:
            logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )
    return model