Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# encoding: utf-8
"""
@author:  liaoxingyu
@contact: sherlockliao01@gmail.com
"""
 
import logging
import math
 
import torch
from torch import nn
 
from layers import (
    IBN,
    SELayer,
    Non_local,
    get_norm,
)
from utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY
from utils import comm
 
 
logger = logging.getLogger(__name__)
model_urls = {
    '18x': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    '34x': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    '50x': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    '101x': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'ibn_18x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth',
    'ibn_34x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth',
    'ibn_50x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth',
    'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth',
    'se_ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/se_resnet101_ibn_a-fabed4e2.pth',
}
 
 
class BasicBlock(nn.Module):
    expansion = 1
 
    def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
                 stride=1, downsample=None, reduction=16):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        if with_ibn:
            self.bn1 = IBN(planes, bn_norm)
        else:
            self.bn1 = get_norm(bn_norm, planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = get_norm(bn_norm, planes)
        self.relu = nn.ReLU(inplace=True)
        if with_se:
            self.se = SELayer(planes, reduction)
        else:
            self.se = nn.Identity()
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        identity = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
 
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out += identity
        out = self.relu(out)
 
        return out
 
 
class Bottleneck(nn.Module):
    expansion = 4
 
    def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
                 stride=1, downsample=None, reduction=16):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        if with_ibn:
            self.bn1 = IBN(planes, bn_norm)
        else:
            self.bn1 = get_norm(bn_norm, planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = get_norm(bn_norm, planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = get_norm(bn_norm, planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        if with_se:
            self.se = SELayer(planes * self.expansion, reduction)
        else:
            self.se = nn.Identity()
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        residual = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        out = self.se(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ResNet(nn.Module):
    def __init__(self, last_stride, bn_norm, with_ibn, with_se, with_nl, block, layers, non_layers):
        self.inplanes = 64
        super().__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = get_norm(bn_norm, 64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
        self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn, with_se)
        self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn, with_se)
        self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn, with_se)
        self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_se=with_se)
 
        self.random_init()
 
        # fmt: off
        if with_nl: self._build_nonlocal(layers, non_layers, bn_norm)
        else:       self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
        # fmt: on
 
    def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", with_ibn=False, with_se=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                get_norm(bn_norm, planes * block.expansion),
            )
 
        layers = []
        layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se))
 
        return nn.Sequential(*layers)
 
    def _build_nonlocal(self, layers, non_layers, bn_norm):
        self.NL_1 = nn.ModuleList(
            [Non_local(256, bn_norm) for _ in range(non_layers[0])])
        self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
        self.NL_2 = nn.ModuleList(
            [Non_local(512, bn_norm) for _ in range(non_layers[1])])
        self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
        self.NL_3 = nn.ModuleList(
            [Non_local(1024, bn_norm) for _ in range(non_layers[2])])
        self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
        self.NL_4 = nn.ModuleList(
            [Non_local(2048, bn_norm) for _ in range(non_layers[3])])
        self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        NL1_counter = 0
        if len(self.NL_1_idx) == 0:
            self.NL_1_idx = [-1]
        for i in range(len(self.layer1)):
            x = self.layer1[i](x)
            if i == self.NL_1_idx[NL1_counter]:
                _, C, H, W = x.shape
                x = self.NL_1[NL1_counter](x)
                NL1_counter += 1
        # Layer 2
        NL2_counter = 0
        if len(self.NL_2_idx) == 0:
            self.NL_2_idx = [-1]
        for i in range(len(self.layer2)):
            x = self.layer2[i](x)
            if i == self.NL_2_idx[NL2_counter]:
                _, C, H, W = x.shape
                x = self.NL_2[NL2_counter](x)
                NL2_counter += 1
        # Layer 3
        NL3_counter = 0
        if len(self.NL_3_idx) == 0:
            self.NL_3_idx = [-1]
        for i in range(len(self.layer3)):
            x = self.layer3[i](x)
            if i == self.NL_3_idx[NL3_counter]:
                _, C, H, W = x.shape
                x = self.NL_3[NL3_counter](x)
                NL3_counter += 1
        # Layer 4
        NL4_counter = 0
        if len(self.NL_4_idx) == 0:
            self.NL_4_idx = [-1]
        for i in range(len(self.layer4)):
            x = self.layer4[i](x)
            if i == self.NL_4_idx[NL4_counter]:
                _, C, H, W = x.shape
                x = self.NL_4[NL4_counter](x)
                NL4_counter += 1
 
        return x
 
    def random_init(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
 
 
def init_pretrained_weights(key):
    """Initializes model with pretrained weights.
 
    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    import os
    import errno
    import gdown
 
    def _get_torch_home():
        ENV_TORCH_HOME = 'TORCH_HOME'
        ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
        DEFAULT_CACHE_DIR = '~/.cache'
        torch_home = os.path.expanduser(
            os.getenv(
                ENV_TORCH_HOME,
                os.path.join(
                    os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
                )
            )
        )
        return torch_home
 
    torch_home = _get_torch_home()
    model_dir = os.path.join(torch_home, 'checkpoints')
    try:
        os.makedirs(model_dir)
    except OSError as e:
        if e.errno == errno.EEXIST:
            # Directory already exists, ignore.
            pass
        else:
            # Unexpected OSError, re-raise.
            raise
 
    filename = model_urls[key].split('/')[-1]
 
    cached_file = os.path.join(model_dir, filename)
 
    if not os.path.exists(cached_file):
        if comm.is_main_process():
            gdown.download(model_urls[key], cached_file, quiet=False)
 
    comm.synchronize()
 
    logger.info(f"Loading pretrained model from {cached_file}")
    state_dict = torch.load(cached_file, map_location=torch.device('cpu'))
 
    return state_dict
 
 
@BACKBONE_REGISTRY.register()
def build_resnet_backbone(cfg):
    """
    Create a ResNet instance from config.
    Returns:
        ResNet: a :class:`ResNet` instance.
    """
 
    # fmt: off
    pretrain      = cfg.MODEL.BACKBONE.PRETRAIN
    pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
    last_stride   = cfg.MODEL.BACKBONE.LAST_STRIDE
    bn_norm       = cfg.MODEL.BACKBONE.NORM
    with_ibn      = cfg.MODEL.BACKBONE.WITH_IBN
    with_se       = cfg.MODEL.BACKBONE.WITH_SE
    with_nl       = cfg.MODEL.BACKBONE.WITH_NL
    depth         = cfg.MODEL.BACKBONE.DEPTH
    # fmt: on
 
    num_blocks_per_stage = {
        '18x': [2, 2, 2, 2],
        '34x': [3, 4, 6, 3],
        '50x': [3, 4, 6, 3],
        '101x': [3, 4, 23, 3],
    }[depth]
 
    nl_layers_per_stage = {
        '18x': [0, 0, 0, 0],
        '34x': [0, 0, 0, 0],
        '50x': [0, 2, 3, 0],
        '101x': [0, 2, 9, 0]
    }[depth]
 
    block = {
        '18x': BasicBlock,
        '34x': BasicBlock,
        '50x': Bottleneck,
        '101x': Bottleneck
    }[depth]
 
    model = ResNet(last_stride, bn_norm, with_ibn, with_se, with_nl, block,
                   num_blocks_per_stage, nl_layers_per_stage)
    if pretrain:
        # Load pretrain path if specifically
        if pretrain_path:
            try:
                state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
                logger.info(f"Loading pretrained model from {pretrain_path}")
            except FileNotFoundError as e:
                logger.info(f'{pretrain_path} is not found! Please check this path.')
                raise e
            except KeyError as e:
                logger.info("State dict keys error! Please check the state dict.")
                raise e
        else:
            key = depth
            if with_ibn: key = 'ibn_' + key
            if with_se:  key = 'se_' + key
 
            state_dict = init_pretrained_weights(key)
 
        incompatible = model.load_state_dict(state_dict, strict=False)
        if incompatible.missing_keys:
            logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )
 
    return model