Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# encoding: utf-8
"""
@author:  xingyu liao
@contact: liaoxingyu5@jd.com
"""
 
# based on:
# https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py
 
import math
import logging
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torch
from layers import IBN
from .build import BACKBONE_REGISTRY
 
 
class Bottleneck(nn.Module):
    """
    RexNeXt bottleneck type C
    """
    expansion = 4
 
    def __init__(self, inplanes, planes, with_ibn, baseWidth, cardinality, stride=1, downsample=None):
        """ Constructor
        Args:
            inplanes: input channel dimensionality
            planes: output channel dimensionality
            baseWidth: base width.
            cardinality: num of convolution groups.
            stride: conv stride. Replaces pooling layer.
        """
        super(Bottleneck, self).__init__()
 
        D = int(math.floor(planes * (baseWidth / 64)))
        C = cardinality
        self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False)
        if with_ibn:
            self.bn1 = IBN(D * C)
        else:
            self.bn1 = nn.BatchNorm2d(D * C)
        self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
        self.bn2 = nn.BatchNorm2d(D * C)
        self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
 
        self.downsample = downsample
 
    def forward(self, x):
        residual = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ResNeXt(nn.Module):
    """
    ResNext optimized for the ImageNet dataset, as specified in
    https://arxiv.org/pdf/1611.05431.pdf
    """
 
    def __init__(self, last_stride, with_ibn, block, layers, baseWidth=4, cardinality=32):
        """ Constructor
        Args:
            baseWidth: baseWidth for ResNeXt.
            cardinality: number of convolution groups.
            layers: config of layers, e.g., [3, 4, 6, 3]
            num_classes: number of classes
        """
        super(ResNeXt, self).__init__()
 
        self.cardinality = cardinality
        self.baseWidth = baseWidth
        self.inplanes = 64
        self.output_size = 64
 
        self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], with_ibn=with_ibn)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, with_ibn=with_ibn)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, with_ibn=with_ibn)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride, with_ibn=with_ibn)
 
        self.random_init()
 
    def _make_layer(self, block, planes, blocks, stride=1, with_ibn=False):
        """ Stack n bottleneck modules where n is inferred from the depth of the network.
        Args:
            block: block type used to construct ResNext
            planes: number of output channels (need to multiply by block.expansion)
            blocks: number of blocks to be built
            stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
        Returns: a Module consisting of n sequential bottlenecks.
        """
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
 
        layers = []
        if planes == 512:
            with_ibn = False
        layers.append(block(self.inplanes, planes, with_ibn, self.baseWidth, self.cardinality, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, with_ibn, self.baseWidth, self.cardinality, 1, None))
 
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool1(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        return x
 
    def random_init(self):
        self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64)))
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.InstanceNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
 
 
@BACKBONE_REGISTRY.register()
def build_resnext_backbone(cfg):
    """
    Create a ResNeXt instance from config.
    Returns:
        ResNeXt: a :class:`ResNeXt` instance.
    """
 
    # fmt: off
    pretrain = cfg.MODEL.BACKBONE.PRETRAIN
    pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
    last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
    with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
    with_se = cfg.MODEL.BACKBONE.WITH_SE
    with_nl = cfg.MODEL.BACKBONE.WITH_NL
    depth = cfg.MODEL.BACKBONE.DEPTH
 
    num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth]
    nl_layers_per_stage = {50: [0, 2, 3, 0], 101: [0, 2, 3, 0]}[depth]
    model = ResNeXt(last_stride, with_ibn, Bottleneck, num_blocks_per_stage)
    if pretrain:
        # if not with_ibn:
        # original resnet
        # state_dict = model_zoo.load_url(model_urls[depth])
        # else:
        # ibn resnet
        state_dict = torch.load(pretrain_path)['state_dict']
        # remove module in name
        new_state_dict = {}
        for k in state_dict:
            new_k = '.'.join(k.split('.')[1:])
            if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
                new_state_dict[new_k] = state_dict[k]
        state_dict = new_state_dict
        res = model.load_state_dict(state_dict, strict=False)
        logger = logging.getLogger(__name__)
        logger.info('missing keys is {}'.format(res.missing_keys))
        logger.info('unexpected keys is {}'.format(res.unexpected_keys))
    return model