Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 
import collections
import copy
import logging
import os
from collections import defaultdict
from typing import Any
 
import numpy as np
import torch
import torch.nn as nn
from termcolor import colored
from torch.nn.parallel import DataParallel, DistributedDataParallel
 
from .file_io import PathManager
 
 
class Checkpointer(object):
    """
    A checkpointer that can save/load model as well as extra checkpointable
    objects.
    """
 
    def __init__(
            self,
            model: nn.Module,
            save_dir: str = "",
            *,
            save_to_disk: bool = True,
            **checkpointables: object,
    ):
        """
        Args:
            model (nn.Module): model.
            save_dir (str): a directory to save and find checkpoints.
            save_to_disk (bool): if True, save checkpoint to disk, otherwise
                disable saving for this checkpointer.
            checkpointables (object): any checkpointable objects, i.e., objects
                that have the `state_dict()` and `load_state_dict()` method. For
                example, it can be used like
                `Checkpointer(model, "dir", optimizer=optimizer)`.
        """
        if isinstance(model, (DistributedDataParallel, DataParallel)):
            model = model.module
        self.model = model
        self.checkpointables = copy.copy(checkpointables)
        self.logger = logging.getLogger(__name__)
        self.save_dir = save_dir
        self.save_to_disk = save_to_disk
 
    def save(self, name: str, **kwargs: dict):
        """
        Dump model and checkpointables to a file.
        Args:
            name (str): name of the file.
            kwargs (dict): extra arbitrary data to save.
        """
        if not self.save_dir or not self.save_to_disk:
            return
 
        data = {}
        data["model"] = self.model.state_dict()
        for key, obj in self.checkpointables.items():
            data[key] = obj.state_dict()
        data.update(kwargs)
 
        basename = "{}.pth".format(name)
        save_file = os.path.join(self.save_dir, basename)
        assert os.path.basename(save_file) == basename, basename
        self.logger.info("Saving checkpoint to {}".format(save_file))
        with PathManager.open(save_file, "wb") as f:
            torch.save(data, f)
        self.tag_last_checkpoint(basename)
 
    def load(self, path: str):
        """
        Load from the given checkpoint. When path points to network file, this
        function has to be called on all ranks.
        Args:
            path (str): path or url to the checkpoint. If empty, will not load
                anything.
        Returns:
            dict:
                extra data loaded from the checkpoint that has not been
                processed. For example, those saved with
                :meth:`.save(**extra_data)`.
        """
        if not path:
            # no checkpoint provided
            self.logger.info(
                "No checkpoint found. Training model from scratch"
            )
            return {}
        self.logger.info("Loading checkpoint from {}".format(path))
        if not os.path.isfile(path):
            path = PathManager.get_local_path(path)
            assert os.path.isfile(path), "Checkpoint {} not found!".format(path)
 
        checkpoint = self._load_file(path)
        self._load_model(checkpoint)
        for key, obj in self.checkpointables.items():
            if key in checkpoint:
                self.logger.info("Loading {} from {}".format(key, path))
                obj.load_state_dict(checkpoint.pop(key))
 
        # return any further checkpoint data
        return checkpoint
 
    def has_checkpoint(self):
        """
        Returns:
            bool: whether a checkpoint exists in the target directory.
        """
        save_file = os.path.join(self.save_dir, "last_checkpoint")
        return PathManager.exists(save_file)
 
    def get_checkpoint_file(self):
        """
        Returns:
            str: The latest checkpoint file in target directory.
        """
        save_file = os.path.join(self.save_dir, "last_checkpoint")
        try:
            with PathManager.open(save_file, "r") as f:
                last_saved = f.read().strip()
        except IOError:
            # if file doesn't exist, maybe because it has just been
            # deleted by a separate process
            return ""
        return os.path.join(self.save_dir, last_saved)
 
    def get_all_checkpoint_files(self):
        """
        Returns:
            list: All available checkpoint files (.pth files) in target
                directory.
        """
        all_model_checkpoints = [
            os.path.join(self.save_dir, file)
            for file in PathManager.ls(self.save_dir)
            if PathManager.isfile(os.path.join(self.save_dir, file))
               and file.endswith(".pth")
        ]
        return all_model_checkpoints
 
    def resume_or_load(self, path: str, *, resume: bool = True):
        """
        If `resume` is True, this method attempts to resume from the last
        checkpoint, if exists. Otherwise, load checkpoint from the given path.
        This is useful when restarting an interrupted training job.
        Args:
            path (str): path to the checkpoint.
            resume (bool): if True, resume from the last checkpoint if it exists.
        Returns:
            same as :meth:`load`.
        """
        if resume and self.has_checkpoint():
            path = self.get_checkpoint_file()
        return self.load(path)
 
    def tag_last_checkpoint(self, last_filename_basename: str):
        """
        Tag the last checkpoint.
        Args:
            last_filename_basename (str): the basename of the last filename.
        """
        save_file = os.path.join(self.save_dir, "last_checkpoint")
        with PathManager.open(save_file, "w") as f:
            f.write(last_filename_basename)
 
    def _load_file(self, f: str):
        """
        Load a checkpoint file. Can be overwritten by subclasses to support
        different formats.
        Args:
            f (str): a locally mounted file path.
        Returns:
            dict: with keys "model" and optionally others that are saved by
                the checkpointer dict["model"] must be a dict which maps strings
                to torch.Tensor or numpy arrays.
        """
        return torch.load(f, map_location=torch.device("cpu"))
 
    def _load_model(self, checkpoint: Any):
        """
        Load weights from a checkpoint.
        Args:
            checkpoint (Any): checkpoint contains the weights.
        """
        checkpoint_state_dict = checkpoint.pop("model")
        self._convert_ndarray_to_tensor(checkpoint_state_dict)
 
        # if the state_dict comes from a model that was wrapped in a
        # DataParallel or DistributedDataParallel during serialization,
        # remove the "module" prefix before performing the matching.
        _strip_prefix_if_present(checkpoint_state_dict, "module.")
 
        # work around https://github.com/pytorch/pytorch/issues/24139
        model_state_dict = self.model.state_dict()
        for k in list(checkpoint_state_dict.keys()):
            if k in model_state_dict:
                shape_model = tuple(model_state_dict[k].shape)
                shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
                if shape_model != shape_checkpoint:
                    self.logger.warning(
                        "'{}' has shape {} in the checkpoint but {} in the "
                        "model! Skipped.".format(
                            k, shape_checkpoint, shape_model
                        )
                    )
                    checkpoint_state_dict.pop(k)
 
        incompatible = self.model.load_state_dict(
            checkpoint_state_dict, strict=False
        )
        if incompatible.missing_keys:
            self.logger.info(
                get_missing_parameters_message(incompatible.missing_keys)
            )
        if incompatible.unexpected_keys:
            self.logger.info(
                get_unexpected_parameters_message(incompatible.unexpected_keys)
            )
 
    def _convert_ndarray_to_tensor(self, state_dict: dict):
        """
        In-place convert all numpy arrays in the state_dict to torch tensor.
        Args:
            state_dict (dict): a state-dict to be loaded to the model.
        """
        # model could be an OrderedDict with _metadata attribute
        # (as returned by Pytorch's state_dict()). We should preserve these
        # properties.
        for k in list(state_dict.keys()):
            v = state_dict[k]
            if not isinstance(v, np.ndarray) and not isinstance(
                    v, torch.Tensor
            ):
                raise ValueError(
                    "Unsupported type found in checkpoint! {}: {}".format(
                        k, type(v)
                    )
                )
            if not isinstance(v, torch.Tensor):
                state_dict[k] = torch.from_numpy(v)
 
 
class PeriodicCheckpointer:
    """
    Save checkpoints periodically. When `.step(iteration)` is called, it will
    execute `checkpointer.save` on the given checkpointer, if iteration is a
    multiple of period or if `max_iter` is reached.
    """
 
    def __init__(self, checkpointer: Any, period: int, max_iter: int = None):
        """
        Args:
            checkpointer (Any): the checkpointer object used to save
            checkpoints.
            period (int): the period to save checkpoint.
            max_iter (int): maximum number of iterations. When it is reached,
                a checkpoint named "model_final" will be saved.
        """
        self.checkpointer = checkpointer
        self.period = int(period)
        self.max_iter = max_iter
 
    def step(self, iteration: int, **kwargs: Any):
        """
        Perform the appropriate action at the given iteration.
        Args:
            iteration (int): the current iteration, ranged in [0, max_iter-1].
            kwargs (Any): extra data to save, same as in
                :meth:`Checkpointer.save`.
        """
        iteration = int(iteration)
        additional_state = {"iteration": iteration}
        additional_state.update(kwargs)
        if (iteration + 1) % self.period == 0:
            self.checkpointer.save(
                "model_{:07d}".format(iteration), **additional_state
            )
        if iteration >= self.max_iter - 1:
            self.checkpointer.save("model_final", **additional_state)
 
    def save(self, name: str, **kwargs: Any):
        """
        Same argument as :meth:`Checkpointer.save`.
        Use this method to manually save checkpoints outside the schedule.
        Args:
            name (str): file name.
            kwargs (Any): extra data to save, same as in
                :meth:`Checkpointer.save`.
        """
        self.checkpointer.save(name, **kwargs)
 
 
def get_missing_parameters_message(keys: list):
    """
    Get a logging-friendly message to report parameter names (keys) that are in
    the model but not found in a checkpoint.
    Args:
        keys (list[str]): List of keys that were not found in the checkpoint.
    Returns:
        str: message.
    """
    groups = _group_checkpoint_keys(keys)
    msg = "Some model parameters are not in the checkpoint:\n"
    msg += "\n".join(
        "  " + colored(k + _group_to_str(v), "blue") for k, v in groups.items()
    )
    return msg
 
 
def get_unexpected_parameters_message(keys: list):
    """
    Get a logging-friendly message to report parameter names (keys) that are in
    the checkpoint but not found in the model.
    Args:
        keys (list[str]): List of keys that were not found in the model.
    Returns:
        str: message.
    """
    groups = _group_checkpoint_keys(keys)
    msg = "The checkpoint contains parameters not used by the model:\n"
    msg += "\n".join(
        "  " + colored(k + _group_to_str(v), "magenta")
        for k, v in groups.items()
    )
    return msg
 
 
def _strip_prefix_if_present(state_dict: collections.OrderedDict, prefix: str):
    """
    Strip the prefix in metadata, if any.
    Args:
        state_dict (OrderedDict): a state-dict to be loaded to the model.
        prefix (str): prefix.
    """
    keys = sorted(state_dict.keys())
    if not all(len(key) == 0 or key.startswith(prefix) for key in keys):
        return
 
    for key in keys:
        newkey = key[len(prefix):]
        state_dict[newkey] = state_dict.pop(key)
 
    # also strip the prefix in metadata, if any..
    try:
        metadata = state_dict._metadata
    except AttributeError:
        pass
    else:
        for key in list(metadata.keys()):
            # for the metadata dict, the key can be:
            # '': for the DDP module, which we want to remove.
            # 'module': for the actual model.
            # 'module.xx.xx': for the rest.
 
            if len(key) == 0:
                continue
            newkey = key[len(prefix):]
            metadata[newkey] = metadata.pop(key)
 
 
def _group_checkpoint_keys(keys: list):
    """
    Group keys based on common prefixes. A prefix is the string up to the final
    "." in each key.
    Args:
        keys (list[str]): list of parameter names, i.e. keys in the model
            checkpoint dict.
    Returns:
        dict[list]: keys with common prefixes are grouped into lists.
    """
    groups = defaultdict(list)
    for key in keys:
        pos = key.rfind(".")
        if pos >= 0:
            head, tail = key[:pos], [key[pos + 1:]]
        else:
            head, tail = key, []
        groups[head].extend(tail)
    return groups
 
 
def _group_to_str(group: list):
    """
    Format a group of parameter name suffixes into a loggable string.
    Args:
        group (list[str]): list of parameter name suffixes.
    Returns:
        str: formated string.
    """
    if len(group) == 0:
        return ""
 
    if len(group) == 1:
        return "." + group[0]
 
    return ".{" + ", ".join(group) + "}"