Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
B
ɧ–_éDã@sÀdZddlZddlZddlZddlmZddlmZmZmZm    Z    ddl
m Z m Z ddl mZdZd    d
„d DƒZd d „Zdd
„e ¡DƒZGdd„dejƒZGdd„dejƒZe ¡dd„ƒZdS)zResNeSt modelséN)Únn)ÚIBNÚ    Non_localÚ SplAtConv2dÚget_norm)Ú!get_unexpected_parameters_messageÚget_missing_parameters_messageé)ÚBACKBONE_REGISTRYz9https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pthcCsi|]\}}||“qS©r )Ú.0ZchecksumÚnamer r ú./modeling/backbones/resnest.pyú
<dictcomp>sr))Z528c19caZ    resnest50)Z22405ba7Z
resnest101)Z75117900Z
resnest200)Z0cc87c48Z
resnest269cCs(|tkrtdj|dƒ‚t|dd…S)Nz-Pretrained model for {name} is not available.)r é)Ú _model_sha256Ú
ValueErrorÚformat)r r r rÚ
short_hash!srcCsi|]}t |t|ƒ¡|“qSr )Ú _url_formatrr)r r r r rr'scs.eZdZdZdZd ‡fdd    „    Zd
d „Z‡ZS) Ú
BottleneckzResNet Bottleneck
    éFr    Né@çcsœtt|ƒ ¡t||
dƒ|    }tj||ddd|_|rJt|||ƒ|_nt    |||ƒ|_||_
||_ | or|dkpr||_ | |_ |j r˜tjd|dd|_d}|dkrÈt||d|| | |    d||||||d|_nh|rdd    lm}|||d|| | |    d|d
    |_t    |||ƒ|_n*tj||d|| | |    dd |_t    |||ƒ|_tj||d ddd|_t    ||d |ƒ|_|rxdd lm}||jjƒtjdd|_||_| |_||_dS)NgP@r    F)Ú kernel_sizeÚbiasé)Úpadding) rÚstriderÚdilationÚgroupsrÚradixÚrectifyÚ rectify_avgÚ
norm_layerÚ
num_splitsÚdropblock_probr)ÚRFConv2d)rrrrr rÚ average_mode)rrrrr rr)Úzeros_T)Úinplace)ÚsuperrÚ__init__ÚintrÚConv2dÚconv1rÚbn1rr&r!ÚavdÚ    avd_firstÚ    AvgPool2dÚ    avd_layerrÚconv2Úrfconvr'Úbn2Úconv3Úbn3Z torch.nn.initr)ÚweightÚReLUÚreluÚ
downsamplerr)ÚselfÚinplanesÚplanesÚbn_normr%Úwith_ibnrr=r!Ú cardinalityÚbottleneck_widthr1r2rÚis_firstÚrectified_convr#r&Ú
last_gammaZ group_widthr'r))Ú    __class__r rr,2sZ  
   zBottleneck.__init__cCsð|}| |¡}| |¡}|jdkr,| |¡}| |¡}|jrL|jrL| |¡}| |¡}|j    dkrˆ| 
|¡}|jdkr~|  |¡}| |¡}|jrž|jsž| |¡}|  |¡}|  |¡}|jdkrÆ| |¡}|jdk    rÚ| |¡}||7}| |¡}|S)Ngr    )r/r0r&Z
dropblock1r<r1r2r4r5r!r7Z
dropblock2r8r9Z
dropblock3r=)r>ÚxÚresidualÚoutr r rÚforwardks2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
zBottleneck.forward)Fr    Nr    r    rFFr    FFFrF)Ú__name__Ú
__module__Ú __qualname__Ú__doc__Ú    expansionr,rLÚ __classcell__r r )rHrr,s5rcs<eZdZdZd‡fdd„    Zdd d „Zd d„Zdd„Z‡ZS)ÚResNesta“ResNet Variants ResNest
    Parameters
    ----------
    block : Block
        Class for the residual block. Options are BasicBlockV1, BottleneckV1.
    layers : list of int
        Numbers of layers in each block
    classes : int, default 1000
        Number of classification classes.
    dilated : bool, default False
        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
        typically used in Semantic Segmentation.
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
        for Synchronized Cross-GPU BachNormalization).
    Reference:
        - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
    r    rFçrcs,|
|_| |_|r|dnd|_||_||_|    |_||_||_tƒ     ¡||_
||_ |rhddl m }|}ntj}|rzd|ini}|r
t |d|fddddd    œ|—Žt|||ƒtjd
d |||fddddd    œ|—Žt|||ƒtjd
d |||dfddddd    œ|—Ž¡|_n|dd dddd    œ|—Ž|_t||j|ƒ|_tjd
d |_tjdddd |_|j|d|dd|||dd|_|j|d|dd|||d|_| s¢| dkrè|j|d|dd|||d|d    |_|j|d|dd|||d|d    |_n| dkr8|j|d|dd|||d|d    |_|j|d|dd|||d|d    |_n@|j|d|dd||||d|_|j|d|d|||||d|_x~| ¡D]r}t|tjƒrÊ|jd|jd|j }|j!j" #dt$ %d|¡¡n(t|tj&ƒr‚|j!j" 'd¡|j(j" )¡q‚W|r| *||||¡ng|_+|_,|_-|_.dS)Nérr)r'r(rr    F)rrrrT)r*é)rrr)rBrEé€)rBré)rBrr&i)rBr&g@)rr)/rCrDr?Úavg_downrGr!r1r2r+r,rFr#r6r'rr.Ú
Sequentialrr;r/r0r<Ú    MaxPool2dÚmaxpoolÚ _make_layerÚlayer1Úlayer2Úlayer3Úlayer4ÚmodulesÚ
isinstancerÚ out_channelsr:ÚdataÚnormal_ÚmathÚsqrtÚ BatchNorm2dÚfill_rÚzero_Ú_build_nonlocalÚNL_1_idxÚNL_2_idxÚNL_3_idxÚNL_4_idx)r>Ú last_striderAr%rBÚwith_nlÚblockÚlayersÚ
non_layersr!r rDZdilatedrÚ    deep_stemÚ
stem_widthrYrFr#r1r2Z
final_dropr&rGr'Z
conv_layerZ conv_kwargsÚmÚn)rHr rr,¥sp
 
 
 
 
&
  
 
 
zResNest.__init__ÚBNTc Csød} |dks|j||jkrÈg} |jr„|dkrH|  tj||ddd¡n|  tjddddd¡|  tj|j||jdddd¡n"|  tj|j||jd|dd¡|  t|||j|ƒ¡tj| Ž} g} |dkrØd}|dksê|dkr0|  ||j|||||| |j    |j
|j |j |j d|
|j|j|    |jd¡n^|d    kr€|  ||j|||||| |j    |j
|j |j |j d|
|j|j|    |jd¡ntd
 |¡ƒ‚||j|_xRtd|ƒD]D}|  ||j|||||j    |j
|j |j |j ||j|j|    |jd ¡q¦Wtj| ŽS) Nr    TF)rrÚ    ceil_modeÚcount_include_pad)rrrirU) r=r!rCrDr1r2rrErFr#r&rGrz=> unknown dilation size: {})
r!rCrDr1r2rrFr#r&rG)r?rQrYÚappendrr3r.rrZr!rCrDr1r2rFr#rGÚ RuntimeErrorrÚrange)r>rsr@ÚblocksrrAr%rBrr&rEr=Z down_layersrtÚir r rr]ðs`   
 
 zResNest._make_layercst ‡‡fdd„t|dƒDƒ¡|_t‡fdd„t|dƒDƒƒ|_t ‡‡fdd„t|dƒDƒ¡|_t‡fdd„t|dƒDƒƒ|_t ‡‡fdd„t|d    ƒDƒ¡|_t‡fd
d„t|d    ƒDƒƒ|_    t ‡‡fd d„t|d ƒDƒ¡|_
t‡fd d„t|d ƒDƒƒ|_ dS)Ncsg|]}tdˆˆƒ‘qS)rX)r)r Ú_)rAr%r rú
<listcomp>+sz+ResNest._build_nonlocal.<locals>.<listcomp>rcsg|]}ˆd|d‘qS)rr    r )r r)rtr rrƒ,scsg|]}tdˆˆƒ‘qS)i)r)r r‚)rAr%r rrƒ.sr    csg|]}ˆd|d‘qS)r    r )r r)rtr rrƒ/scsg|]}tdˆˆƒ‘qS)i)r)r r‚)rAr%r rrƒ1srUcsg|]}ˆd|d‘qS)rUr    r )r r)rtr rrƒ2scsg|]}tdˆˆƒ‘qS)i)r)r r‚)rAr%r rrƒ4srcsg|]}ˆd|d‘qS)rr    r )r r)rtr rrƒ5s) rÚ
ModuleListrÚNL_1ÚsortedrmÚNL_2rnÚNL_3roÚNL_4rp)r>rtrurAr%r )rArtr%rrl)s       zResNest._build_nonlocalc Cs| |¡}| |¡}| |¡}| |¡}d}t|jƒdkrBdg|_xVtt|jƒƒD]D}|j||ƒ}||j|krR|j\}}}}|j    ||ƒ}|d7}qRWd}t|j
ƒdkr´dg|_
xVtt|j ƒƒD]D}|j ||ƒ}||j
|krÄ|j\}}}}|j ||ƒ}|d7}qÄWd}    t|j ƒdkr(dg|_ xZtt|jƒƒD]H}|j||ƒ}||j |    kr8|j\}}}}|j|    |ƒ}|    d7}    q8Wd}
t|jƒdkr dg|_xZtt|jƒƒD]H}|j||ƒ}||j|
kr°|j\}}}}|j|
|ƒ}|
d7}
q°W|S)Nréÿÿÿÿr    )r/r0r<r\Úlenrmrr^Úshaper…rnr_r‡ror`rˆrprar‰) r>rIÚ NL1_counterrr‚ÚCÚHÚWÚ NL2_counterÚ NL3_counterÚ NL4_counterr r rrL7sR
 
 
 
  zResNest.forward)r    r    rFr    FrFFFFFrTrF)r    rzr    Fr    rTT)    rMrNrOrPr,r]rlrLrRr r )rHrrSsD
8rScCsJ|jjj}|jjj}|jjj}|jjj}|jjj}|jjj}|jjj}|jjj    }ddddgddddgddddgdddd    gd
œ|}    d d dd gd d dd gd œ|}
ddddd
œ|} t
|||||t |    |
d ddd| dddd} |rFt j jtdt|ƒddd} | j| dd}t t¡}|jr.| t|jƒ¡|jrF| t|jƒ¡| S)zi
    Create a ResNest instance from config.
    Returns:
        ResNet: a :class:`ResNet` instance.
    rréééé$éé0r)é2éeéÈi rrU)ršr›é rr    TF)r!r rDrvrwrYr1r2Úresnest)ÚprogressÚ
check_hash)Ústrict)ÚMODELÚBACKBONEÚPRETRAINÚ LAST_STRIDEÚNORMZ
NORM_SPLITÚWITH_IBNÚWITH_SEÚWITH_NLÚDEPTHrSrÚtorchÚhubÚload_state_dict_from_urlÚ
model_urlsÚstrÚload_state_dictÚloggingÚ    getLoggerrMÚ missing_keysÚinforÚunexpected_keysr)ÚcfgÚpretrainrqrAr%rBÚwith_serrÚdepthÚnum_blocks_per_stageÚnl_layers_per_stagerwÚmodelÚ
state_dictÚ incompatibleÚloggerr r rÚbuild_resnest_backbonehs6    
 
 
 
 
 
 
 
2
 
  rÀ)rPr±rgr«rrtrrrrÚutils.checkpointrrÚbuildr
rrrÚkeysr®ÚModulerrSÚregisterrÀr r r rÚ<module>s    cZ