Scheaven
2021-09-18 291deeb1fcf45dbf39a24aa72a213ff3fd6b3405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
U
ɧ–_éDã@sÀdZddlZddlZddlZddlmZddlmZmZmZm    Z    ddl
m Z m Z ddl mZdZd    d
„d DƒZd d „Zdd
„e ¡DƒZGdd„dejƒZGdd„dejƒZe ¡dd„ƒZdS)zResNeSt modelséN)Únn)ÚIBNÚ    Non_localÚ SplAtConv2dÚget_norm)Ú!get_unexpected_parameters_messageÚget_missing_parameters_messageé)ÚBACKBONE_REGISTRYz9https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pthcCsi|]\}}||“qS©r )Ú.0ZchecksumÚnamer r ú./modeling/backbones/resnest.pyÚ
<dictcomp>sr))Z528c19caZ    resnest50)Z22405ba7Z
resnest101)Z75117900Z
resnest200)Z0cc87c48Z
resnest269cCs(|tkrtdj|dƒ‚t|dd…S)Nz-Pretrained model for {name} is not available.©r é)Ú _model_sha256Ú
ValueErrorÚformatrr r rÚ
short_hash!srcCsi|]}|t |t|ƒ¡“qSr )Ú _url_formatrr)r r r r rr'sÿcs.eZdZdZdZd ‡fdd    „    Zd
d „Z‡ZS) Ú
BottleneckzResNet Bottleneck
    éFr    Né@çcsœtt|ƒ ¡t||
dƒ|    }tj||ddd|_|rJt|||ƒ|_nt    |||ƒ|_||_
||_ | or|dkpr||_ | |_ |j r˜tjd|dd|_d}|dkrÈt||d|| | |    d||||||d|_nh|rdd    lm}|||d|| | |    d|d
    |_t    |||ƒ|_n*tj||d|| | |    dd |_t    |||ƒ|_tj||d ddd|_t    ||d |ƒ|_|rxdd lm}||jjƒtjdd|_||_| |_||_dS)NgP@r    F)Ú kernel_sizeÚbiasé)Úpadding) rÚstriderÚdilationÚgroupsrÚradixÚrectifyÚ rectify_avgÚ
norm_layerÚ
num_splitsÚdropblock_probr©ÚRFConv2d)rrrr r!rÚ average_mode)rrrr r!rr)Úzeros_T©Úinplace)ÚsuperrÚ__init__ÚintrÚConv2dÚconv1rÚbn1rr'r"ÚavdÚ    avd_firstÚ    AvgPool2dÚ    avd_layerrÚconv2Úrfconvr)Úbn2Úconv3Úbn3Z torch.nn.initr+ÚweightÚReLUÚreluÚ
downsampler r)ÚselfÚinplanesÚplanesÚbn_normr&Úwith_ibnrr@r"Ú cardinalityÚbottleneck_widthr4r5r Úis_firstÚrectified_convr$r'Ú
last_gammaZ group_widthr)r+©Ú    __class__r rr/2sŠù
 üýÿ  zBottleneck.__init__cCsð|}| |¡}| |¡}|jdkr,| |¡}| |¡}|jrL|jrL| |¡}| |¡}|j    dkrˆ| 
|¡}|jdkr~|  |¡}| |¡}|jrž|jsž| |¡}|  |¡}|  |¡}|jdkrÆ| |¡}|jdk    rÚ| |¡}||7}| |¡}|S)Nrr    )r2r3r'Z
dropblock1r?r4r5r7r8r"r:Z
dropblock2r;r<Z
dropblock3r@)rAÚxÚresidualÚoutr r rÚforwardks2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
zBottleneck.forward)Fr    Nr    r    rFFr    FFFrF)Ú__name__Ú
__module__Ú __qualname__Ú__doc__Ú    expansionr/rPÚ __classcell__r r rKrr,s ü9rcs<eZdZdZd‡fdd„    Zdd d „Zd d„Zdd„Z‡ZS)ÚResNesta“ResNet Variants ResNest
    Parameters
    ----------
    block : Block
        Class for the residual block. Options are BasicBlockV1, BottleneckV1.
    layers : list of int
        Numbers of layers in each block
    classes : int, default 1000
        Number of classification classes.
    dilated : bool, default False
        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
        typically used in Semantic Segmentation.
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
        for Synchronized Cross-GPU BachNormalization).
    Reference:
        - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
    r    rFrrcs(|
|_| |_|r|dnd|_||_||_|    |_||_||_tƒ     ¡||_
||_ |rhddl m }|}ntj}|rzd|ini}|r
t |d|fddddd    œ|—Žt|||ƒtjd
d |||fddddd    œ|—Žt|||ƒtjd
d |||dfddddd    œ|—Ž¡|_n|dd dddd    œ|—Ž|_t||j|ƒ|_tjd
d |_tjdddd |_|j|d|dd|||dd|_|j|d|dd|||d|_| s¢| dkrè|j|d|dd|||d|d    |_|j|d|dd|||d|d    |_n| dkr8|j|d|dd|||d|d    |_|j|d|dd|||d|d    |_n@|j|d|dd||||d|_|j|d|d|||||d|_| ¡D]r}t|tjƒrÈ|jd|jd|j }|j!j" #dt$ %d|¡¡n(t|tj&ƒr€|j!j" 'd¡|j(j" )¡q€|r | *||||¡ng|_+|_,|_-|_.dS)Nérrr(r*rr    F)rrrrTr,é)rrr)rErHé€)rEré)rEr r'é)rEr'g@)rr)/rFrGrBÚavg_downrJr"r4r5r.r/rIr$r9r)rr1Ú
Sequentialrr>r2r3r?Ú    MaxPool2dÚmaxpoolÚ _make_layerÚlayer1Úlayer2Úlayer3Úlayer4ÚmodulesÚ
isinstancerÚ out_channelsr=ÚdataÚnormal_ÚmathÚsqrtÚ BatchNorm2dÚfill_rÚzero_Ú_build_nonlocalÚNL_1_idxÚNL_2_idxÚNL_3_idxÚNL_4_idx)rAÚ last_striderDr&rEÚwith_nlÚblockÚlayersÚ
non_layersr"r!rGZdilatedr Ú    deep_stemÚ
stem_widthr]rIr$r4r5Z
final_dropr'rJr)Z
conv_layerZ conv_kwargsÚmÚnrKr rr/¥sŒ
 
 
 
 
ù
 
ÿÿ ÿÿ
 
ÿÿ
ÿÿ zResNest.__init__ÚBNTc Csôd} |dks|j||jkrÈg} |jr„|dkrH|  tj||ddd¡n|  tjddddd¡|  tj|j||jdddd¡n"|  tj|j||jd|dd¡|  t|||j|ƒ¡tj| Ž} g} |dkrØd}|dksê|dkr0|  ||j|||||| |j    |j
|j |j |j d|
|j|j|    |jd¡n^|d    kr€|  ||j|||||| |j    |j
|j |j |j d|
|j|j|    |jd¡ntd
 |¡ƒ‚||j|_td|ƒD]D}|  ||j|||||j    |j
|j |j |j ||j|j|    |jd ¡q¤tj| ŽS) Nr    TF)rrÚ    ceil_modeÚcount_include_pad)rrrr\rX) r@r"rFrGr4r5r rHrIr$r'rJrz=> unknown dilation size: {})
r"rFrGr4r5r rIr$r'rJ)rBrUr]Úappendrr6r1rr^r"rFrGr4r5rIr$rJÚ RuntimeErrorrÚrange)rArwrCÚblocksrrDr&rEr r'rHr@Z down_layersrxÚir r rraðs ÿ
 ÿÿ
ÿ
ù
 
ù
     ù     zResNest._make_layercst ‡‡fdd„t|dƒDƒ¡|_t‡fdd„t|dƒDƒƒ|_t ‡‡fdd„t|dƒDƒ¡|_t‡fdd„t|dƒDƒƒ|_t ‡‡fdd„t|d    ƒDƒ¡|_t‡fd
d„t|d    ƒDƒƒ|_    t ‡‡fd d„t|d ƒDƒ¡|_
t‡fd d„t|d ƒDƒƒ|_ dS)Ncsg|]}tdˆˆƒ‘qS)r[©r©r Ú_©rDr&r rÚ
<listcomp>+sz+ResNest._build_nonlocal.<locals>.<listcomp>rcsg|]}ˆd|d‘qS)rr    r ©r r…©rxr rrŠ,scsg|]}tdˆˆƒ‘qS)r\r†r‡r‰r rrŠ.sr    csg|]}ˆd|d‘qS)r    r r‹rŒr rrŠ/scsg|]}tdˆˆƒ‘qS)ir†r‡r‰r rrŠ1srXcsg|]}ˆd|d‘qS)rXr    r r‹rŒr rrŠ2scsg|]}tdˆˆƒ‘qS)ir†r‡r‰r rrŠ4srcsg|]}ˆd|d‘qS)rr    r r‹rŒr rrŠ5s) rÚ
ModuleListrƒÚNL_1ÚsortedrqÚNL_2rrÚNL_3rsÚNL_4rt)rArxryrDr&r )rDrxr&rrp)s ÿ ÿ ÿ ÿzResNest._build_nonlocalc Csð| |¡}| |¡}| |¡}| |¡}d}t|jƒdkrBdg|_tt|jƒƒD]D}|j||ƒ}||j|krP|j\}}}}|j    ||ƒ}|d7}qPd}t|j
ƒdkr°dg|_
tt|j ƒƒD]D}|j ||ƒ}||j
|kr¾|j\}}}}|j ||ƒ}|d7}q¾d}    t|j ƒdkr dg|_ tt|jƒƒD]H}|j||ƒ}||j |    kr.|j\}}}}|j|    |ƒ}|    d7}    q.d}
t|jƒdkr”dg|_tt|jƒƒD]H}|j||ƒ}||j|
kr¢|j\}}}}|j|
|ƒ}|
d7}
q¢|S)Nréÿÿÿÿr    )r2r3r?r`ÚlenrqrƒrbÚshaperŽrrrcrrsrdr‘rtrer’) rArMÚ NL1_counterr…rˆÚCÚHÚWÚ NL2_counterÚ NL3_counterÚ NL4_counterr r rrP7sR
 
 
 
 
 
  zResNest.forward)r    r    rFr    FrFFFFFrrF)r    r~r    Fr    rT)    rQrRrSrTr/rarprPrVr r rKrrWs.ùKÿ
9rWcCsJ|jjj}|jjj}|jjj}|jjj}|jjj}|jjj}|jjj}|jjj    }ddddgddddgddddgdddd    gd
œ|}    d d dd gd d dd gd œ|}
ddddd
œ|} t
|||||t |    |
d ddd| dddd} |rFt j jtdt|ƒddd} | j| dd}t t¡}|jr.| t|jƒ¡|jrF| t|jƒ¡| S)zi
    Create a ResNest instance from config.
    Returns:
        ResNet: a :class:`ResNet` instance.
    rréééé$éé0r)é2éeéÈi rrX)r£r¤é rr    TF)r"r!rGrzr{r]r4r5Úresnest)ÚprogressÚ
check_hash)Ústrict)ÚMODELÚBACKBONEÚPRETRAINÚ LAST_STRIDEÚNORMZ
NORM_SPLITÚWITH_IBNÚWITH_SEÚWITH_NLÚDEPTHrWrÚtorchÚhubÚload_state_dict_from_urlÚ
model_urlsÚstrÚload_state_dictÚloggingÚ    getLoggerrQÚ missing_keysÚinforÚunexpected_keysr)ÚcfgÚpretrainrurDr&rEÚwith_servÚdepthÚnum_blocks_per_stageÚnl_layers_per_stager{ÚmodelÚ
state_dictÚ incompatibleÚloggerr r rÚbuild_resnest_backbonehsN    
 
 
 
 
 
 
 
2ýÿ 
ÿÿrÉ)rTrºrkr´rrxrrrrÚutils.checkpointrrÚbuildr
rrrÚkeysr·ÚModulerrWÚregisterrÉr r r rÚ<module>s$  ÿcZ