basic版本的yolo,在yolov3版本上增加人体跟踪
xuepengqiang
2020-05-26 5966f2b095841627d62daac0159e81f83544b85c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
[net]
batch=128
subdivisions=1
height=227
width=227
channels=3
momentum=0.9
decay=0.0005
max_crop=256
 
learning_rate=0.01
policy=poly
power=4
max_batches=800000
 
angle=7
hue = .1
saturation=.75
exposure=.75
aspect=.75
 
[convolutional]
filters=96
size=11
stride=4
pad=0
activation=relu
 
[maxpool]
size=3
stride=2
padding=0
 
[convolutional]
filters=256
size=5
stride=1
pad=1
activation=relu
 
[maxpool]
size=3
stride=2
padding=0
 
[convolutional]
filters=384
size=3
stride=1
pad=1
activation=relu
 
[convolutional]
filters=384
size=3
stride=1
pad=1
activation=relu
 
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
 
[maxpool]
size=3
stride=2
padding=0
 
[connected]
output=4096
activation=relu
 
[dropout]
probability=.5
 
[connected]
output=4096
activation=relu
 
[dropout]
probability=.5
 
[connected]
output=1000
activation=linear
 
[softmax]
groups=1
 
[cost]
type=sse