basic版本的yolo,在yolov3版本上增加人体跟踪
xuepengqiang
2020-05-26 5966f2b095841627d62daac0159e81f83544b85c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
 
#ifdef CUDNN
#pragma comment(lib, "cudnn.lib")  
#endif
 
extern "C" {
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "gemm.h"
#include "blas.h"
#include "im2col.h"
#include "col2im.h"
#include "utils.h"
#include "cuda.h"
}
 
__global__ void binarize_kernel(float *x, int n, float *binary)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if (i >= n) return;
    binary[i] = (x[i] >= 0) ? 1 : -1;
}
 
void binarize_gpu(float *x, int n, float *binary)
{
    binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary);
    check_error(cudaPeekAtLastError());
}
 
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
{
    int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if (s >= size) return;
    int i = 0;
    float mean = 0;
    for(i = 0; i < n; ++i){
        mean += fabs(input[i*size + s]);
    }
    mean = mean / n;
    for(i = 0; i < n; ++i){
        binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
    }
}
 
void binarize_input_gpu(float *input, int n, int size, float *binary)
{
    binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary);
    check_error(cudaPeekAtLastError());
}
 
 
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
{
    int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if (f >= n) return;
    int i = 0;
    float mean = 0;
    for(i = 0; i < size; ++i){
        mean += fabs(weights[f*size + i]);
    }
    mean = mean / size;
    for(i = 0; i < size; ++i){
        binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
        //binary[f*size + i] = weights[f*size + i];
    }
}
 
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
{
    binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary);
    check_error(cudaPeekAtLastError());
}
 
__global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
    //if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
}
 
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
    cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
}
 
__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
    //if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
}
 
void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
    cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
}
 
half *cuda_make_f16_from_f32_array(float *src, size_t n)
{
    half *dst16;
    size_t size = sizeof(half)*n;
    check_error(cudaMalloc((void **)&dst16, size));
    if (src) {
        cuda_convert_f32_to_f16(src, n, (float *)dst16);
    }
    if (!dst16) error("Cuda malloc failed\n");
    return dst16;
}
 
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
    fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
    if(l.binary){
        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
        swap_binary(&l);
    }
 
    if(l.xnor){
        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
        swap_binary(&l);
        binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
        state.input = l.binary_input_gpu;
    }
 
#ifdef CUDNN
    float one = 1;    // alpha[0], beta[0] is float for HALF and FLOAT
    float alpha = 1, beta = 0; 
 
#ifdef CUDNN_HALF
    // Note: For improved performance it is advised to use beta[0] = 0.0. 
    // For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH;
    // 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF
    // 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
    // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
 
    const size_t input16_size = l.batch*l.c*l.w*l.h;
    const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w;
 
    if (*state.net.max_input16_size < input16_size) {
        //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size);
        *state.net.max_input16_size = input16_size;
        if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
        *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
    }
    float *input16 = *state.net.input16_gpu;
 
    if (*state.net.max_output16_size < output16_size) {
        *state.net.max_output16_size = output16_size;
        if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
        *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
    }
    float *output16 = *state.net.output16_gpu;
 
    cuda_convert_f32_to_f16(state.input, input16_size, input16);
 
    //fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
    cudnnConvolutionForward(cudnn_handle(),
        &alpha,
        l.srcTensorDesc,
        input16,
        l.weightDesc,
        l.weights_gpu16,
        l.convDesc,
        l.fw_algo,
        state.workspace,
        l.workspace_size,
        &beta,
        l.dstTensorDesc,
        output16);
    
 
    if (l.batch_normalize) 
    {        
        if (state.train) // Training
        {
            copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
            //cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
            float one = 1;
            float zero = 0;
            // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
            // compared to FP32, it’s just that the statistics and value adjustment should be done in FP32.
            cudnnBatchNormalizationForwardTraining(cudnn_handle(),
                CUDNN_BATCHNORM_SPATIAL,
                &one,
                &zero,
                l.normDstTensorDescF16,
                l.x_gpu,            // input
                l.normDstTensorDescF16,
                output16,            // output
                l.normTensorDesc,
                l.scales_gpu,
                l.biases_gpu,
                .01,
                l.rolling_mean_gpu,        // output (should be FP32)
                l.rolling_variance_gpu,    // output (should be FP32)
                .00001,
                l.mean_gpu,            // output (should be FP32)
                l.variance_gpu);    // output (should be FP32)
 
            cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
            //forward_batchnorm_layer_gpu(l, state);
        }
        else // Detection
        {
            cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
            normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
            scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
            add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
        }
    }
    else // BIAS only
    {
        cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
    }    
 
#else
 
    cudnnConvolutionForward(cudnn_handle(),
                &one,
                l.srcTensorDesc,
                state.input,
                l.weightDesc,
                l.weights_gpu,
                l.convDesc,
                l.fw_algo,
                state.workspace,
                l.workspace_size,
                &one,
                l.dstTensorDesc,
                l.output_gpu);
#endif    // CUDNN_HALF
 
 
#else
    int i;
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = l.out_w*l.out_h;
    for(i = 0; i < l.batch; ++i){
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
        float * a = l.weights_gpu;
        float * b = state.workspace;
        float * c = l.output_gpu;
        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
    }
#endif
 
#ifndef CUDNN_HALF
    if (l.batch_normalize) {
        forward_batchnorm_layer_gpu(l, state);
    }
    else {
        add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
    }
#endif // no CUDNN_HALF
 
    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
    //if(l.dot > 0) dot_error_gpu(l);
    if(l.binary || l.xnor) swap_binary(&l);
    //cudaDeviceSynchronize();    // for correct profiling of performance
}
 
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
 
    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
 
#ifndef CUDNN_HALF
    if(l.batch_normalize){
        backward_batchnorm_layer_gpu(l, state);
    } else {
        //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
    }
#endif // no CUDNN_HALF
    float *original_input = state.input;
 
    if(l.xnor) state.input = l.binary_input_gpu;
#ifdef CUDNN
    float one = 1;
    float alpha = 1, beta = 0;
 
#ifdef CUDNN_HALF
        
    const size_t input16_size = l.batch*l.c*l.w*l.h;
    const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h;
    
    if (*state.net.max_input16_size < input16_size) {        
        *state.net.max_input16_size = input16_size;
        if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
        *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
    }
    float *input16 = *state.net.input16_gpu;
 
    if (*state.net.max_output16_size < delta16_size) {
        *state.net.max_output16_size = delta16_size;
        if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
        *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
    }
    float *delta16 = *state.net.output16_gpu;
 
    cuda_convert_f32_to_f16(state.input, input16_size, input16);
    cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
 
    if (l.batch_normalize) {
        //if (!state.train) {
        //    l.mean_gpu = l.rolling_mean_gpu;
        //    l.variance_gpu = l.rolling_variance_gpu;
        //}
        float one = 1;
        float zero = 0;
        cudnnBatchNormalizationBackward(cudnn_handle(),
            CUDNN_BATCHNORM_SPATIAL,
            &one,
            &zero,
            &one,
            &one,
            l.normDstTensorDescF16,
            l.x_gpu,                // input
            l.normDstTensorDescF16,
            delta16,                // input
            l.normDstTensorDescF16,
            l.x_norm_gpu,            // output
            l.normTensorDesc,
            l.scales_gpu,            // output (should be FP32)
            l.scale_updates_gpu,    // output (should be FP32)
            l.bias_updates_gpu,        // output (should be FP32)
            .00001,
            l.mean_gpu,                // input (should be FP32)
            l.variance_gpu);        // input (should be FP32)
        copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
        //cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
    }
    else
    {
        //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
    }
 
    // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
    // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
 
    // calculate conv weight updates
    // Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum
    //   so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
    cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16);
 
    cudnnConvolutionBackwardFilter(cudnn_handle(),
        &one,
        l.srcTensorDesc,
        input16, //state.input,
        l.ddstTensorDesc,
        delta16, //l.delta_gpu,
        l.convDesc,
        l.bf_algo,
        state.workspace,
        l.workspace_size,
        &one,
        l.dweightDesc,
        l.weight_updates_gpu16);    // l.weight_updates_gpu);
 
    cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu);
 
    if (state.delta) {
        if (l.binary || l.xnor) swap_binary(&l);
 
        // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
        // calculate delta for the next layer
        // convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
        // get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)    
        cudnnConvolutionBackwardData(cudnn_handle(),
            &alpha,
            l.weightDesc,
            l.weights_gpu16, //l.weights_gpu,
            l.ddstTensorDesc,
            delta16, //l.delta_gpu,
            l.convDesc,
            l.bd_algo,
            state.workspace,
            l.workspace_size,
            &beta,
            l.dsrcTensorDesc,
            input16);    // state.delta);
 
        cuda_convert_f16_to_f32(input16, input16_size, state.delta);
 
        if (l.binary || l.xnor) swap_binary(&l);
        if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
    }
#else    // CUDNN_HALF
 
    // calculate conv weight updates
    // if used: beta=1 then loss decreases faster
    cudnnConvolutionBackwardFilter(cudnn_handle(),
            &one,
            l.srcTensorDesc,
            state.input,
            l.ddstTensorDesc,
            l.delta_gpu,
            l.convDesc,
            l.bf_algo,
            state.workspace,
            l.workspace_size,
            &one,
            l.dweightDesc,
            l.weight_updates_gpu);
 
    if(state.delta){
        if(l.binary || l.xnor) swap_binary(&l);
        // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
        // calculate delta for the next layer
        cudnnConvolutionBackwardData(cudnn_handle(),
                &one,
                l.weightDesc,
                l.weights_gpu,
                l.ddstTensorDesc,
                l.delta_gpu,
                l.convDesc,
                l.bd_algo,
                state.workspace,
                l.workspace_size,
                &one,
                l.dsrcTensorDesc,
                state.delta);
        if(l.binary || l.xnor) swap_binary(&l);
        if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
    }
 
#endif    // CUDNN_HALF
 
#else    // CUDNN
    int m = l.n;
    int n = l.size*l.size*l.c;
    int k = l.out_w*l.out_h;
 
    int i;
    for(i = 0; i < l.batch; ++i){
        float * a = l.delta_gpu;
        float * b = state.workspace;
        float * c = l.weight_updates_gpu;
 
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
        gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
 
        if(state.delta){
            if(l.binary || l.xnor) swap_binary(&l);
            float * a = l.weights_gpu;
            float * b = l.delta_gpu;
            float * c = state.workspace;
 
            gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
            col2im_ongpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
            if(l.binary || l.xnor) {
                swap_binary(&l);
            }
            if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
        }
    }
#endif
}
 
void pull_convolutional_layer(convolutional_layer layer)
{
    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
    cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
    if (layer.batch_normalize){
        cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
        cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
        cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
    }
    if (layer.adam){
        cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
        cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
    }
}
 
void push_convolutional_layer(convolutional_layer layer)
{
    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
#ifdef CUDNN_HALF
    cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16);
#endif
    cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
    if (layer.batch_normalize){
        cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
        cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
        cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
    }
    if (layer.adam){
        cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
        cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
    }
}
 
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
    if(layer.scales_gpu){
        axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
        scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
    }
 
    if(layer.adam){
        scal_ongpu(size, layer.B1, layer.m_gpu, 1);
        scal_ongpu(size, layer.B2, layer.v_gpu, 1);
 
        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
 
        axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
        mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
        axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);
 
        adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1);
        fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
    }else{
        // update weights:
        // weights_gpu = weights_gpu*(1 - decay*lr) + weight_updates_gpu*lr / (batch*subdivision) =
        //  weights_gpu*(1 - 0.0005*0.001) + weight_updates_gpu*0.001/(64*8) = 
        //  weights_gpu * 0.999 999 5 + weight_updates_gpu * 0.000 001 953125
        // 
        // weight_updates_gpu = (weight_updates_gpu - weights_gpu*decay*batch*subdivision)*momentum = 
        //  (weight_updates_gpu - weights_gpu * 0.0005 * 64 * 8) * 0.9 = 
        //  weight_updates_gpu*0.9 - weights_gpu*0.2304
        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
        axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
        scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
    }
}