#include "cuda_runtime.h"
|
#include "curand.h"
|
#include "cublas_v2.h"
|
|
#ifdef CUDNN
|
#pragma comment(lib, "cudnn.lib")
|
#endif
|
|
extern "C" {
|
#include "convolutional_layer.h"
|
#include "batchnorm_layer.h"
|
#include "gemm.h"
|
#include "blas.h"
|
#include "im2col.h"
|
#include "col2im.h"
|
#include "utils.h"
|
#include "cuda.h"
|
}
|
|
__global__ void binarize_kernel(float *x, int n, float *binary)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i >= n) return;
|
binary[i] = (x[i] >= 0) ? 1 : -1;
|
}
|
|
void binarize_gpu(float *x, int n, float *binary)
|
{
|
binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary);
|
check_error(cudaPeekAtLastError());
|
}
|
|
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
|
{
|
int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (s >= size) return;
|
int i = 0;
|
float mean = 0;
|
for(i = 0; i < n; ++i){
|
mean += fabs(input[i*size + s]);
|
}
|
mean = mean / n;
|
for(i = 0; i < n; ++i){
|
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
|
}
|
}
|
|
void binarize_input_gpu(float *input, int n, int size, float *binary)
|
{
|
binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary);
|
check_error(cudaPeekAtLastError());
|
}
|
|
|
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
|
{
|
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (f >= n) return;
|
int i = 0;
|
float mean = 0;
|
for(i = 0; i < size; ++i){
|
mean += fabs(weights[f*size + i]);
|
}
|
mean = mean / size;
|
for(i = 0; i < size; ++i){
|
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
|
//binary[f*size + i] = weights[f*size + i];
|
}
|
}
|
|
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
|
{
|
binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary);
|
check_error(cudaPeekAtLastError());
|
}
|
|
__global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
|
{
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
|
//if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
|
}
|
|
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
|
cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
|
}
|
|
__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
|
{
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
|
//if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
|
}
|
|
void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
|
cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
|
}
|
|
half *cuda_make_f16_from_f32_array(float *src, size_t n)
|
{
|
half *dst16;
|
size_t size = sizeof(half)*n;
|
check_error(cudaMalloc((void **)&dst16, size));
|
if (src) {
|
cuda_convert_f32_to_f16(src, n, (float *)dst16);
|
}
|
if (!dst16) error("Cuda malloc failed\n");
|
return dst16;
|
}
|
|
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
{
|
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
if(l.binary){
|
binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
|
swap_binary(&l);
|
}
|
|
if(l.xnor){
|
binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
|
swap_binary(&l);
|
binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
|
state.input = l.binary_input_gpu;
|
}
|
|
#ifdef CUDNN
|
float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT
|
float alpha = 1, beta = 0;
|
|
#ifdef CUDNN_HALF
|
// Note: For improved performance it is advised to use beta[0] = 0.0.
|
// For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH;
|
// 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF
|
// 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
|
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
|
|
const size_t input16_size = l.batch*l.c*l.w*l.h;
|
const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w;
|
|
if (*state.net.max_input16_size < input16_size) {
|
//printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size);
|
*state.net.max_input16_size = input16_size;
|
if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
|
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
|
}
|
float *input16 = *state.net.input16_gpu;
|
|
if (*state.net.max_output16_size < output16_size) {
|
*state.net.max_output16_size = output16_size;
|
if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
|
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
|
}
|
float *output16 = *state.net.output16_gpu;
|
|
cuda_convert_f32_to_f16(state.input, input16_size, input16);
|
|
//fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
|
cudnnConvolutionForward(cudnn_handle(),
|
&alpha,
|
l.srcTensorDesc,
|
input16,
|
l.weightDesc,
|
l.weights_gpu16,
|
l.convDesc,
|
l.fw_algo,
|
state.workspace,
|
l.workspace_size,
|
&beta,
|
l.dstTensorDesc,
|
output16);
|
|
|
if (l.batch_normalize)
|
{
|
if (state.train) // Training
|
{
|
copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
|
//cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
|
float one = 1;
|
float zero = 0;
|
// Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
|
// compared to FP32, its just that the statistics and value adjustment should be done in FP32.
|
cudnnBatchNormalizationForwardTraining(cudnn_handle(),
|
CUDNN_BATCHNORM_SPATIAL,
|
&one,
|
&zero,
|
l.normDstTensorDescF16,
|
l.x_gpu, // input
|
l.normDstTensorDescF16,
|
output16, // output
|
l.normTensorDesc,
|
l.scales_gpu,
|
l.biases_gpu,
|
.01,
|
l.rolling_mean_gpu, // output (should be FP32)
|
l.rolling_variance_gpu, // output (should be FP32)
|
.00001,
|
l.mean_gpu, // output (should be FP32)
|
l.variance_gpu); // output (should be FP32)
|
|
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
|
//forward_batchnorm_layer_gpu(l, state);
|
}
|
else // Detection
|
{
|
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
|
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
|
}
|
}
|
else // BIAS only
|
{
|
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
}
|
|
#else
|
|
cudnnConvolutionForward(cudnn_handle(),
|
&one,
|
l.srcTensorDesc,
|
state.input,
|
l.weightDesc,
|
l.weights_gpu,
|
l.convDesc,
|
l.fw_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dstTensorDesc,
|
l.output_gpu);
|
#endif // CUDNN_HALF
|
|
|
#else
|
int i;
|
int m = l.n;
|
int k = l.size*l.size*l.c;
|
int n = l.out_w*l.out_h;
|
for(i = 0; i < l.batch; ++i){
|
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
|
float * a = l.weights_gpu;
|
float * b = state.workspace;
|
float * c = l.output_gpu;
|
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
|
}
|
#endif
|
|
#ifndef CUDNN_HALF
|
if (l.batch_normalize) {
|
forward_batchnorm_layer_gpu(l, state);
|
}
|
else {
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
}
|
#endif // no CUDNN_HALF
|
|
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
//if(l.dot > 0) dot_error_gpu(l);
|
if(l.binary || l.xnor) swap_binary(&l);
|
//cudaDeviceSynchronize(); // for correct profiling of performance
|
}
|
|
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
{
|
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
|
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
|
#ifndef CUDNN_HALF
|
if(l.batch_normalize){
|
backward_batchnorm_layer_gpu(l, state);
|
} else {
|
//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
}
|
#endif // no CUDNN_HALF
|
float *original_input = state.input;
|
|
if(l.xnor) state.input = l.binary_input_gpu;
|
#ifdef CUDNN
|
float one = 1;
|
float alpha = 1, beta = 0;
|
|
#ifdef CUDNN_HALF
|
|
const size_t input16_size = l.batch*l.c*l.w*l.h;
|
const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h;
|
|
if (*state.net.max_input16_size < input16_size) {
|
*state.net.max_input16_size = input16_size;
|
if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
|
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
|
}
|
float *input16 = *state.net.input16_gpu;
|
|
if (*state.net.max_output16_size < delta16_size) {
|
*state.net.max_output16_size = delta16_size;
|
if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
|
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
|
}
|
float *delta16 = *state.net.output16_gpu;
|
|
cuda_convert_f32_to_f16(state.input, input16_size, input16);
|
cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
|
|
if (l.batch_normalize) {
|
//if (!state.train) {
|
// l.mean_gpu = l.rolling_mean_gpu;
|
// l.variance_gpu = l.rolling_variance_gpu;
|
//}
|
float one = 1;
|
float zero = 0;
|
cudnnBatchNormalizationBackward(cudnn_handle(),
|
CUDNN_BATCHNORM_SPATIAL,
|
&one,
|
&zero,
|
&one,
|
&one,
|
l.normDstTensorDescF16,
|
l.x_gpu, // input
|
l.normDstTensorDescF16,
|
delta16, // input
|
l.normDstTensorDescF16,
|
l.x_norm_gpu, // output
|
l.normTensorDesc,
|
l.scales_gpu, // output (should be FP32)
|
l.scale_updates_gpu, // output (should be FP32)
|
l.bias_updates_gpu, // output (should be FP32)
|
.00001,
|
l.mean_gpu, // input (should be FP32)
|
l.variance_gpu); // input (should be FP32)
|
copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
|
//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
|
}
|
else
|
{
|
//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
}
|
|
// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
|
// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
|
|
// calculate conv weight updates
|
// Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum
|
// so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
|
cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16);
|
|
cudnnConvolutionBackwardFilter(cudnn_handle(),
|
&one,
|
l.srcTensorDesc,
|
input16, //state.input,
|
l.ddstTensorDesc,
|
delta16, //l.delta_gpu,
|
l.convDesc,
|
l.bf_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dweightDesc,
|
l.weight_updates_gpu16); // l.weight_updates_gpu);
|
|
cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu);
|
|
if (state.delta) {
|
if (l.binary || l.xnor) swap_binary(&l);
|
|
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
|
// calculate delta for the next layer
|
// convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
|
// get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)
|
cudnnConvolutionBackwardData(cudnn_handle(),
|
&alpha,
|
l.weightDesc,
|
l.weights_gpu16, //l.weights_gpu,
|
l.ddstTensorDesc,
|
delta16, //l.delta_gpu,
|
l.convDesc,
|
l.bd_algo,
|
state.workspace,
|
l.workspace_size,
|
&beta,
|
l.dsrcTensorDesc,
|
input16); // state.delta);
|
|
cuda_convert_f16_to_f32(input16, input16_size, state.delta);
|
|
if (l.binary || l.xnor) swap_binary(&l);
|
if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
|
}
|
#else // CUDNN_HALF
|
|
// calculate conv weight updates
|
// if used: beta=1 then loss decreases faster
|
cudnnConvolutionBackwardFilter(cudnn_handle(),
|
&one,
|
l.srcTensorDesc,
|
state.input,
|
l.ddstTensorDesc,
|
l.delta_gpu,
|
l.convDesc,
|
l.bf_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dweightDesc,
|
l.weight_updates_gpu);
|
|
if(state.delta){
|
if(l.binary || l.xnor) swap_binary(&l);
|
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
|
// calculate delta for the next layer
|
cudnnConvolutionBackwardData(cudnn_handle(),
|
&one,
|
l.weightDesc,
|
l.weights_gpu,
|
l.ddstTensorDesc,
|
l.delta_gpu,
|
l.convDesc,
|
l.bd_algo,
|
state.workspace,
|
l.workspace_size,
|
&one,
|
l.dsrcTensorDesc,
|
state.delta);
|
if(l.binary || l.xnor) swap_binary(&l);
|
if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
|
}
|
|
#endif // CUDNN_HALF
|
|
#else // CUDNN
|
int m = l.n;
|
int n = l.size*l.size*l.c;
|
int k = l.out_w*l.out_h;
|
|
int i;
|
for(i = 0; i < l.batch; ++i){
|
float * a = l.delta_gpu;
|
float * b = state.workspace;
|
float * c = l.weight_updates_gpu;
|
|
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
|
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
|
|
if(state.delta){
|
if(l.binary || l.xnor) swap_binary(&l);
|
float * a = l.weights_gpu;
|
float * b = l.delta_gpu;
|
float * c = state.workspace;
|
|
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
|
|
col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
|
if(l.binary || l.xnor) {
|
swap_binary(&l);
|
}
|
if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
|
}
|
}
|
#endif
|
}
|
|
void pull_convolutional_layer(convolutional_layer layer)
|
{
|
cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
|
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
if (layer.batch_normalize){
|
cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
|
cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
}
|
if (layer.adam){
|
cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
}
|
}
|
|
void push_convolutional_layer(convolutional_layer layer)
|
{
|
cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
#ifdef CUDNN_HALF
|
cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16);
|
#endif
|
cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
|
cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
if (layer.batch_normalize){
|
cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
|
cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
}
|
if (layer.adam){
|
cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
}
|
}
|
|
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
{
|
int size = layer.size*layer.size*layer.c*layer.n;
|
axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
|
|
if(layer.scales_gpu){
|
axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
|
scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
|
}
|
|
if(layer.adam){
|
scal_ongpu(size, layer.B1, layer.m_gpu, 1);
|
scal_ongpu(size, layer.B2, layer.v_gpu, 1);
|
|
axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
|
axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
|
mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
|
axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);
|
|
adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1);
|
fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
|
}else{
|
// update weights:
|
// weights_gpu = weights_gpu*(1 - decay*lr) + weight_updates_gpu*lr / (batch*subdivision) =
|
// weights_gpu*(1 - 0.0005*0.001) + weight_updates_gpu*0.001/(64*8) =
|
// weights_gpu * 0.999 999 5 + weight_updates_gpu * 0.000 001 953125
|
//
|
// weight_updates_gpu = (weight_updates_gpu - weights_gpu*decay*batch*subdivision)*momentum =
|
// (weight_updates_gpu - weights_gpu * 0.0005 * 64 * 8) * 0.9 =
|
// weight_updates_gpu*0.9 - weights_gpu*0.2304
|
axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
|
}
|
}
|