basic版本的yolo,在yolov3版本上增加人体跟踪
xuepengqiang
2020-05-26 5966f2b095841627d62daac0159e81f83544b85c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#include "gemm.h"
#include "utils.h"
#include "cuda.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
 
void gemm_bin(int M, int N, int K, float ALPHA, 
        char  *A, int lda, 
        float *B, int ldb,
        float *C, int ldc)
{
    int i,j,k;
    for(i = 0; i < M; ++i){
        for(k = 0; k < K; ++k){
            char A_PART = A[i*lda+k];
            if(A_PART){
                for(j = 0; j < N; ++j){
                    C[i*ldc+j] += B[k*ldb+j];
                }
            } else {
                for(j = 0; j < N; ++j){
                    C[i*ldc+j] -= B[k*ldb+j];
                }
            }
        }
    }
}
 
float *random_matrix(int rows, int cols)
{
    int i;
    float *m = calloc(rows*cols, sizeof(float));
    for(i = 0; i < rows*cols; ++i){
        m[i] = (float)rand()/RAND_MAX;
    }
    return m;
}
 
void time_random_matrix(int TA, int TB, int m, int k, int n)
{
    float *a;
    if(!TA) a = random_matrix(m,k);
    else a = random_matrix(k,m);
    int lda = (!TA)?k:m;
    float *b;
    if(!TB) b = random_matrix(k,n);
    else b = random_matrix(n,k);
    int ldb = (!TB)?n:k;
 
    float *c = random_matrix(m,n);
    int i;
    clock_t start = clock(), end;
    for(i = 0; i<10; ++i){
        gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
    }
    end = clock();
    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
    free(a);
    free(b);
    free(c);
}
 
 
void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float BETA,
        float *C, int ldc)
{
    gemm_cpu( TA,  TB,  M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
}
 
#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
 
#define OSXSAVEFlag (1UL<<27)
#define AVXFlag     ((1UL<<28)|OSXSAVEFlag)
#define FMAFlag     ((1UL<<12)|AVXFlag|OSXSAVEFlag)
#define CLMULFlag   ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
#define VAESFlag    ((1UL<<25)|AVXFlag|OSXSAVEFlag)
 
#include <stdint.h>
 
#ifdef _WIN64
#include <intrin.h>
#include <ammintrin.h>
#include <immintrin.h>
#include <smmintrin.h>
 
#else    // Linux GCC/Clang
#include <x86intrin.h>
#include <ammintrin.h>
#include <immintrin.h>
#include <smmintrin.h>
#include <cpuid.h>
 
void asm_cpuid(uint32_t* abcd, uint32_t eax)
{
    uint32_t ebx = 0, edx = 0, ecx = 0;
 
    // EBX is saved to EDI and later restored
    __asm__("movl %%ebx, %%edi;"
        "cpuid;"
        "xchgl %%ebx, %%edi;"
        : "=D"(ebx),
        "+a"(eax), "+c"(ecx), "=d"(edx));
 
    abcd[0] = eax;
    abcd[1] = ebx;
    abcd[2] = ecx;
    abcd[3] = edx;
}
 
#endif
 
int simd_detect_x86(unsigned int idFeature)
{
    uint32_t regs[4];    // EAX, EBX, ECX, EDX;
#ifdef _WIN32
    __cpuid(regs, 0);
    if (regs[0] > 1U) __cpuid(regs, 1);
#else
    __get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
    if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
#endif
 
    if ((regs[2] & idFeature) != idFeature)
        return 0;
    return 1;
}
 
int is_fma_avx() {
    static int result = -1;
    if (result == -1) {
        result = simd_detect_x86(AVXFlag);
        if (result == 1) printf(" Used AVX \n");
        else printf(" Not used AVX \n");
    }
    return result;
}
 
// https://software.intel.com/sites/landingpage/IntrinsicsGuide
void gemm_nn(int M, int N, int K, float ALPHA,
    float *A, int lda,
    float *B, int ldb,
    float *C, int ldc)
{
    int i, j, k;
    if (is_fma_avx() == 1) {    // AVX
        for (i = 0; i < M; ++i) {
            for (k = 0; k < K; ++k) {
                float A_PART = ALPHA*A[i*lda + k];
                __m256 a256, b256, c256, result256;    // AVX
                a256 = _mm256_set1_ps(A_PART);
                for (j = 0; j < N - 8; j += 8) {
                    b256 = _mm256_loadu_ps(&B[k*ldb + j]);
                    c256 = _mm256_loadu_ps(&C[i*ldc + j]);
                    // FMA - Intel Haswell (2013), AMD Piledriver (2012)
                    //result256 = _mm256_fmadd_ps(a256, b256, c256);
                    result256 = _mm256_mul_ps(a256, b256);
                    result256 = _mm256_add_ps(result256, c256);
                    _mm256_storeu_ps(&C[i*ldc + j], result256);
                }
 
                int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
                for (j = prev_end; j < N; ++j)
                    C[i*ldc + j] += A_PART*B[k*ldb + j];
            }
        }
    }
    else {
        for (i = 0; i < M; ++i) {
            for (k = 0; k < K; ++k) {
                register float A_PART = ALPHA*A[i*lda + k];
                for (j = 0; j < N; ++j) {
                    C[i*ldc + j] += A_PART*B[k*ldb + j];
                }
                /* // SSE
                __m128 a128, b128, c128, result128;    // SSE
                a128 = _mm_set1_ps(A_PART);
                for (j = 0; j < N - 4; j += 4) {
                b128 = _mm_loadu_ps(&B[k*ldb + j]);
                c128 = _mm_loadu_ps(&C[i*ldc + j]);
                //result128 = _mm_fmadd_ps(a128, b128, c128);
                result128 = _mm_mul_ps(a128, b128);
                result128 = _mm_add_ps(result128, c128);
                _mm_storeu_ps(&C[i*ldc + j], result128);
                }
 
                int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
                for (j = prev_end; j < N; ++j){
                C[i*ldc + j] += A_PART*B[k*ldb + j];
                }
                */
            }
        }
    }
}
#else
 
void gemm_nn(int M, int N, int K, float ALPHA,
    float *A, int lda,
    float *B, int ldb,
    float *C, int ldc)
{
    int i, j, k;
    for (i = 0; i < M; ++i) {
        for (k = 0; k < K; ++k) {
            register float A_PART = ALPHA*A[i*lda + k];
            for (j = 0; j < N; ++j) {
                C[i*ldc + j] += A_PART*B[k*ldb + j];
            }
        }
    }
}
#endif    // __x86_64
 
void gemm_nt(int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float *C, int ldc)
{
    int i,j,k;
    for(i = 0; i < M; ++i){
        for(j = 0; j < N; ++j){
            register float sum = 0;
            for(k = 0; k < K; ++k){
                sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
            }
            C[i*ldc+j] += sum;
        }
    }
}
 
void gemm_tn(int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float *C, int ldc)
{
    int i,j,k;
    for(i = 0; i < M; ++i){
        for(k = 0; k < K; ++k){
            register float A_PART = ALPHA*A[k*lda+i];
            for(j = 0; j < N; ++j){
                C[i*ldc+j] += A_PART*B[k*ldb+j];
            }
        }
    }
}
 
void gemm_tt(int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float *C, int ldc)
{
    int i,j,k;
    for(i = 0; i < M; ++i){
        for(j = 0; j < N; ++j){
            register float sum = 0;
            for(k = 0; k < K; ++k){
                sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
            }
            C[i*ldc+j] += sum;
        }
    }
}
 
 
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float BETA,
        float *C, int ldc)
{
    //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
    int i, j;
    for(i = 0; i < M; ++i){
        for(j = 0; j < N; ++j){
            C[i*ldc + j] *= BETA;
        }
    }
 
    int t;
    #pragma omp parallel for
    for (t = 0; t < M; ++t) {
        if (!TA && !TB)
            gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
        else if (TA && !TB)
            gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
        else if (!TA && TB)
            gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
        else
            gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
    }
}
 
#ifdef GPU
 
#include <math.h>
 
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, 
        float *A_gpu, int lda, 
        float *B_gpu, int ldb,
        float BETA,
        float *C_gpu, int ldc)
{
    cublasHandle_t handle = blas_handle();
    cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
    cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), 
            (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
    check_error(status);
}
 
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, 
        float *A, int lda, 
        float *B, int ldb,
        float BETA,
        float *C, int ldc)
{
    float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
    float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
    float *C_gpu = cuda_make_array(C, ldc*M);
 
    gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
 
    cuda_pull_array(C_gpu, C, ldc*M);
    cuda_free(A_gpu);
    cuda_free(B_gpu);
    cuda_free(C_gpu);
}
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
 
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
{
    float *a;
    if(!TA) a = random_matrix(m,k);
    else a = random_matrix(k,m);
    int lda = (!TA)?k:m;
    float *b;
    if(!TB) b = random_matrix(k,n);
    else b = random_matrix(n,k);
    int ldb = (!TB)?n:k;
 
    float *c = random_matrix(m,n);
    int i;
    clock_t start = clock(), end;
    for(i = 0; i<32; ++i){
        gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
    }
    end = clock();
    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
    free(a);
    free(b);
    free(c);
}
 
void time_ongpu(int TA, int TB, int m, int k, int n)
{
    int iter = 10;
    float *a = random_matrix(m,k);
    float *b = random_matrix(k,n);
 
    int lda = (!TA)?k:m;
    int ldb = (!TB)?n:k;
 
    float *c = random_matrix(m,n);
 
    float *a_cl = cuda_make_array(a, m*k);
    float *b_cl = cuda_make_array(b, k*n);
    float *c_cl = cuda_make_array(c, m*n);
 
    int i;
    clock_t start = clock(), end;
    for(i = 0; i<iter; ++i){
        gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
        cudaThreadSynchronize();
    }
    double flop = ((double)m)*n*(2.*k + 2.)*iter;
    double gflop = flop/pow(10., 9);
    end = clock();
    double seconds = sec(end-start);
    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
    cuda_free(a_cl);
    cuda_free(b_cl);
    cuda_free(c_cl);
    free(a);
    free(b);
    free(c);
}
 
 
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
{
    srand(0);
    float *a;
    if(!TA) a = random_matrix(m,k);
    else a = random_matrix(k,m);
    int lda = (!TA)?k:m;
    float *b;
    if(!TB) b = random_matrix(k,n);
    else b = random_matrix(n,k);
    int ldb = (!TB)?n:k;
 
    float *c = random_matrix(m,n);
    float *c_gpu = random_matrix(m,n);
    memset(c, 0, m*n*sizeof(float));
    memset(c_gpu, 0, m*n*sizeof(float));
    int i;
    //pm(m,k,b);
    gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
    //printf("GPU\n");
    //pm(m, n, c_gpu);
 
    gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
    //printf("\n\nCPU\n");
    //pm(m, n, c);
    double sse = 0;
    for(i = 0; i < m*n; ++i) {
        //printf("%f %f\n", c[i], c_gpu[i]);
        sse += pow(c[i]-c_gpu[i], 2);
    }
    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
    free(a);
    free(b);
    free(c);
    free(c_gpu);
}
 
int test_gpu_blas()
{
    /*
       test_gpu_accuracy(0,0,10,576,75); 
 
       test_gpu_accuracy(0,0,17,10,10); 
       test_gpu_accuracy(1,0,17,10,10); 
       test_gpu_accuracy(0,1,17,10,10); 
       test_gpu_accuracy(1,1,17,10,10); 
 
       test_gpu_accuracy(0,0,1000,10,100); 
       test_gpu_accuracy(1,0,1000,10,100); 
       test_gpu_accuracy(0,1,1000,10,100); 
       test_gpu_accuracy(1,1,1000,10,100); 
 
       test_gpu_accuracy(0,0,10,10,10); 
 
       time_ongpu(0,0,64,2916,363); 
       time_ongpu(0,0,64,2916,363); 
       time_ongpu(0,0,64,2916,363); 
       time_ongpu(0,0,192,729,1600); 
       time_ongpu(0,0,384,196,1728); 
       time_ongpu(0,0,256,196,3456); 
       time_ongpu(0,0,256,196,2304); 
       time_ongpu(0,0,128,4096,12544); 
       time_ongpu(0,0,128,4096,4096); 
     */
    time_ongpu(0,0,64,75,12544); 
    time_ongpu(0,0,64,75,12544); 
    time_ongpu(0,0,64,75,12544); 
    time_ongpu(0,0,64,576,12544); 
    time_ongpu(0,0,256,2304,784); 
    time_ongpu(1,1,2304,256,784); 
    time_ongpu(0,0,512,4608,196); 
    time_ongpu(1,1,4608,512,196); 
 
    return 0;
}
#endif