basic版本的yolo,在yolov3版本上增加人体跟踪
xuepengqiang
2020-05-26 5966f2b095841627d62daac0159e81f83544b85c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "blas.h"
 
#include "crop_layer.h"
#include "connected_layer.h"
#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "normalization_layer.h"
#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
#include "yolo_layer.h"
#include "parser.h"
 
network *load_network(char *cfg, char *weights, int clear)
{
    printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
    network *net = calloc(1, sizeof(network));
    *net = parse_network_cfg(cfg);
    if (weights && weights[0] != 0) {
        load_weights(net, weights);
    }
    if (clear) (*net->seen) = 0;
    return net;
}
 
int get_current_batch(network net)
{
    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
    return batch_num;
}
 
void reset_momentum(network net)
{
    if (net.momentum == 0) return;
    net.learning_rate = 0;
    net.momentum = 0;
    net.decay = 0;
    #ifdef GPU
        //if(net.gpu_index >= 0) update_network_gpu(net);
    #endif
}
 
void reset_network_state(network *net, int b)
{
    int i;
    for (i = 0; i < net->n; ++i) {
#ifdef GPU
        layer l = net->layers[i];
        if (l.state_gpu) {
            fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
        }
        if (l.h_gpu) {
            fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
        }
#endif
    }
}
 
void reset_rnn(network *net)
{
    reset_network_state(net, 0);
}
 
float get_current_rate(network net)
{
    int batch_num = get_current_batch(net);
    int i;
    float rate;
    if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
    switch (net.policy) {
        case CONSTANT:
            return net.learning_rate;
        case STEP:
            return net.learning_rate * pow(net.scale, batch_num/net.step);
        case STEPS:
            rate = net.learning_rate;
            for(i = 0; i < net.num_steps; ++i){
                if(net.steps[i] > batch_num) return rate;
                rate *= net.scales[i];
                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
            }
            return rate;
        case EXP:
            return net.learning_rate * pow(net.gamma, batch_num);
        case POLY:
            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
        case RANDOM:
            return net.learning_rate * pow(rand_uniform(0,1), net.power);
        case SIG:
            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
        default:
            fprintf(stderr, "Policy is weird!\n");
            return net.learning_rate;
    }
}
 
char *get_layer_string(LAYER_TYPE a)
{
    switch(a){
        case CONVOLUTIONAL:
            return "convolutional";
        case ACTIVE:
            return "activation";
        case LOCAL:
            return "local";
        case DECONVOLUTIONAL:
            return "deconvolutional";
        case CONNECTED:
            return "connected";
        case RNN:
            return "rnn";
        case GRU:
            return "gru";
        case CRNN:
            return "crnn";
        case MAXPOOL:
            return "maxpool";
        case REORG:
            return "reorg";
        case AVGPOOL:
            return "avgpool";
        case SOFTMAX:
            return "softmax";
        case DETECTION:
            return "detection";
        case REGION:
            return "region";
        case DROPOUT:
            return "dropout";
        case CROP:
            return "crop";
        case COST:
            return "cost";
        case ROUTE:
            return "route";
        case SHORTCUT:
            return "shortcut";
        case NORMALIZATION:
            return "normalization";
        case BATCHNORM:
            return "batchnorm";
        default:
            break;
    }
    return "none";
}
 
network make_network(int n)
{
    network net = {0};
    net.n = n;
    net.layers = calloc(net.n, sizeof(layer));
    net.seen = calloc(1, sizeof(int));
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
 
    net.input16_gpu = calloc(1, sizeof(float *));
    net.output16_gpu = calloc(1, sizeof(float *));
    net.max_input16_size = calloc(1, sizeof(size_t));
    net.max_output16_size = calloc(1, sizeof(size_t));
    #endif
    return net;
}
 
void forward_network(network net, network_state state)
{
    state.workspace = net.workspace;
    int i;
    for(i = 0; i < net.n; ++i){
        state.index = i;
        layer l = net.layers[i];
        if(l.delta){
            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        l.forward(l, state);
        state.input = l.output;
    }
}
 
void update_network(network net)
{
    int i;
    int update_batch = net.batch*net.subdivisions;
    float rate = get_current_rate(net);
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.update){
            l.update(l, update_batch, rate, net.momentum, net.decay);
        }
    }
}
 
float *get_network_output(network net)
{
#ifdef GPU
    if (gpu_index >= 0) return get_network_output_gpu(net);
#endif 
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].output;
}
 
float get_network_cost(network net)
{
    int i;
    float sum = 0;
    int count = 0;
    for(i = 0; i < net.n; ++i){
        if(net.layers[i].cost){
            sum += net.layers[i].cost[0];
            ++count;
        }
    }
    return sum/count;
}
 
int get_predicted_class_network(network net)
{
    float *out = get_network_output(net);
    int k = get_network_output_size(net);
    return max_index(out, k);
}
 
void backward_network(network net, network_state state)
{
    int i;
    float *original_input = state.input;
    float *original_delta = state.delta;
    state.workspace = net.workspace;
    for(i = net.n-1; i >= 0; --i){
        state.index = i;
        if(i == 0){
            state.input = original_input;
            state.delta = original_delta;
        }else{
            layer prev = net.layers[i-1];
            state.input = prev.output;
            state.delta = prev.delta;
        }
        layer l = net.layers[i];
        if (l.stopbackward) break;
        l.backward(l, state);
    }
}
 
float train_network_datum(network net, float *x, float *y)
{
#ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
    network_state state;
    *net.seen += net.batch;
    state.index = 0;
    state.net = net;
    state.input = x;
    state.delta = 0;
    state.truth = y;
    state.train = 1;
    forward_network(net, state);
    backward_network(net, state);
    float error = get_network_cost(net);
    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
    return error;
}
 
float train_network_sgd(network net, data d, int n)
{
    int batch = net.batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
 
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_random_batch(d, batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
 
float train_network(network net, data d)
{
    assert(d.X.rows % net.batch == 0);
    int batch = net.batch;
    int n = d.X.rows / batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
 
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_next_batch(d, batch, i*batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
 
 
float train_network_batch(network net, data d, int n)
{
    int i,j;
    network_state state;
    state.index = 0;
    state.net = net;
    state.train = 1;
    state.delta = 0;
    float sum = 0;
    int batch = 2;
    for(i = 0; i < n; ++i){
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            state.input = d.X.vals[index];
            state.truth = d.y.vals[index];
            forward_network(net, state);
            backward_network(net, state);
            sum += get_network_cost(net);
        }
        update_network(net);
    }
    return (float)sum/(n*batch);
}
 
void set_batch_network(network *net, int b)
{
    net->batch = b;
    int i;
    for(i = 0; i < net->n; ++i){
        net->layers[i].batch = b;
#ifdef CUDNN
        if(net->layers[i].type == CONVOLUTIONAL){
            cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
            /*
            layer *l = net->layers + i;
            cudnn_convolutional_setup(l, cudnn_fastest);
            // check for excessive memory consumption 
            size_t free_byte;
            size_t total_byte;
            check_error(cudaMemGetInfo(&free_byte, &total_byte));
            if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
                printf(" used slow CUDNN algo without Workspace! \n");
                cudnn_convolutional_setup(l, cudnn_smallest);
                l->workspace_size = get_workspace_size(*l);
            }
            */
        }
#endif
    }
}
 
int resize_network(network *net, int w, int h)
{
#ifdef GPU
    cuda_set_device(net->gpu_index);
    if(gpu_index >= 0){
        cuda_free(net->workspace);
        if (net->input_gpu) {
            cuda_free(*net->input_gpu);
            *net->input_gpu = 0;
            cuda_free(*net->truth_gpu);
            *net->truth_gpu = 0;
        }
    }
#endif
    int i;
    //if(w == net->w && h == net->h) return 0;
    net->w = w;
    net->h = h;
    int inputs = 0;
    size_t workspace_size = 0;
    //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
    //fflush(stderr);
    for (i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        //printf(" %d: layer = %d,", i, l.type);
        if(l.type == CONVOLUTIONAL){
            resize_convolutional_layer(&l, w, h);
        }else if(l.type == CROP){
            resize_crop_layer(&l, w, h);
        }else if(l.type == MAXPOOL){
            resize_maxpool_layer(&l, w, h);
        }else if(l.type == REGION){
            resize_region_layer(&l, w, h);
        }else if (l.type == YOLO) {
            resize_yolo_layer(&l, w, h);
        }else if(l.type == ROUTE){
            resize_route_layer(&l, net);
        }else if (l.type == SHORTCUT) {
            resize_shortcut_layer(&l, w, h);
        }else if (l.type == UPSAMPLE) {
            resize_upsample_layer(&l, w, h);
        }else if(l.type == REORG){
            resize_reorg_layer(&l, w, h);
        }else if(l.type == AVGPOOL){
            resize_avgpool_layer(&l, w, h);
        }else if(l.type == NORMALIZATION){
            resize_normalization_layer(&l, w, h);
        }else if(l.type == COST){
            resize_cost_layer(&l, inputs);
        }else{
            fprintf(stderr, "Resizing type %d \n", (int)l.type);
            error("Cannot resize this type of layer");
        }
        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        inputs = l.outputs;
        net->layers[i] = l;
        w = l.out_w;
        h = l.out_h;
        if(l.type == AVGPOOL) break;
    }
#ifdef GPU
    if(gpu_index >= 0){
        printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        printf(" CUDA allocate done! \n");
    }else {
        free(net->workspace);
        net->workspace = calloc(1, workspace_size);
    }
#else
    free(net->workspace);
    net->workspace = calloc(1, workspace_size);
#endif
    //fprintf(stderr, " Done!\n");
    return 0;
}
 
int get_network_output_size(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].outputs;
}
 
int get_network_input_size(network net)
{
    return net.layers[0].inputs;
}
 
detection_layer get_network_detection_layer(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.layers[i].type == DETECTION){
            return net.layers[i];
        }
    }
    fprintf(stderr, "Detection layer not found!!\n");
    detection_layer l = {0};
    return l;
}
 
image get_network_image_layer(network net, int i)
{
    layer l = net.layers[i];
    if (l.out_w && l.out_h && l.out_c){
        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
    }
    image def = {0};
    return def;
}
 
image get_network_image(network net)
{
    int i;
    for(i = net.n-1; i >= 0; --i){
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    image def = {0};
    return def;
}
 
void visualize_network(network net)
{
    image *prev = 0;
    int i;
    char buff[256];
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            prev = visualize_convolutional_layer(l, buff, prev);
        }
    } 
}
 
void top_predictions(network net, int k, int *index)
{
    int size = get_network_output_size(net);
    float *out = get_network_output(net);
    top_k(out, size, k, index);
}
 
 
float *network_predict(network net, float *input)
{
#ifdef GPU
    if(gpu_index >= 0)  return network_predict_gpu(net, input);
#endif
 
    network_state state;
    state.net = net;
    state.index = 0;
    state.input = input;
    state.truth = 0;
    state.train = 0;
    state.delta = 0;
    forward_network(net, state);
    float *out = get_network_output(net);
    return out;
}
 
int num_detections(network *net, float thresh)
{
    int i;
    int s = 0;
    for (i = 0; i < net->n; ++i) {
        layer l = net->layers[i];
        if (l.type == YOLO) {
            s += yolo_num_detections(l, thresh);
        }
        if (l.type == DETECTION || l.type == REGION) {
            s += l.w*l.h*l.n;
        }
    }
    return s;
}
 
detection *make_network_boxes(network *net, float thresh, int *num)
{
    layer l = net->layers[net->n - 1];
    int i;
    int nboxes = num_detections(net, thresh);
    if (num) *num = nboxes;
    detection *dets = calloc(nboxes, sizeof(detection));
    for (i = 0; i < nboxes; ++i) {
        dets[i].prob = calloc(l.classes, sizeof(float));
        if (l.coords > 4) {
            dets[i].mask = calloc(l.coords - 4, sizeof(float));
        }
    }
    return dets;
}
 
 
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
{
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    int i, j;
    for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
    get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
    for (j = 0; j < l.w*l.h*l.n; ++j) {
        dets[j].classes = l.classes;
        dets[j].bbox = boxes[j];
        dets[j].objectness = 1;
        for (i = 0; i < l.classes; ++i) {
            dets[j].prob[i] = probs[j][i];
        }
    }
 
    free(boxes);
    free_ptrs((void **)probs, l.w*l.h*l.n);
 
    //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
    correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
}
 
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
{
    int j;
    for (j = 0; j < net->n; ++j) {
        layer l = net->layers[j];
        if (l.type == YOLO) {
            int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
            dets += count;
        }
        if (l.type == REGION) {
            custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
            //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
            dets += l.w*l.h*l.n;
        }
        if (l.type == DETECTION) {
            get_detection_detections(l, w, h, thresh, dets);
            dets += l.w*l.h*l.n;
        }
    }
}
 
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
{
    detection *dets = make_network_boxes(net, thresh, num);
    fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
    return dets;
}
 
void free_detections(detection *dets, int n)
{
    int i;
    for (i = 0; i < n; ++i) {
        free(dets[i].prob);
        if (dets[i].mask) free(dets[i].mask);
    }
    free(dets);
}
 
float *network_predict_image(network *net, image im)
{
    image imr = letterbox_image(im, net->w, net->h);
    set_batch_network(net, 1);
    float *p = network_predict(*net, imr.data);
    free_image(imr);
    return p;
}
 
int network_width(network *net) { return net->w; }
int network_height(network *net) { return net->h; }
 
matrix network_predict_data_multi(network net, data test, int n)
{
    int i,j,b,m;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.rows, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        for(m = 0; m < n; ++m){
            float *out = network_predict(net, X);
            for(b = 0; b < net.batch; ++b){
                if(i+b == test.X.rows) break;
                for(j = 0; j < k; ++j){
                    pred.vals[i+b][j] += out[j+b*k]/n;
                }
            }
        }
    }
    free(X);
    return pred;   
}
 
matrix network_predict_data(network net, data test)
{
    int i,j,b;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.cols, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        float *out = network_predict(net, X);
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            for(j = 0; j < k; ++j){
                pred.vals[i+b][j] = out[j+b*k];
            }
        }
    }
    free(X);
    return pred;   
}
 
void print_network(network net)
{
    int i,j;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        float *output = l.output;
        int n = l.outputs;
        float mean = mean_array(output, n);
        float vari = variance_array(output, n);
        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
        if(n > 100) n = 100;
        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
        if(n == 100)fprintf(stderr,".....\n");
        fprintf(stderr, "\n");
    }
}
 
void compare_networks(network n1, network n2, data test)
{
    matrix g1 = network_predict_data(n1, test);
    matrix g2 = network_predict_data(n2, test);
    int i;
    int a,b,c,d;
    a = b = c = d = 0;
    for(i = 0; i < g1.rows; ++i){
        int truth = max_index(test.y.vals[i], test.y.cols);
        int p1 = max_index(g1.vals[i], g1.cols);
        int p2 = max_index(g2.vals[i], g2.cols);
        if(p1 == truth){
            if(p2 == truth) ++d;
            else ++c;
        }else{
            if(p2 == truth) ++b;
            else ++a;
        }
    }
    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
    float num = pow((abs(b - c) - 1.), 2.);
    float den = b + c;
    printf("%f\n", num/den); 
}
 
float network_accuracy(network net, data d)
{
    matrix guess = network_predict_data(net, d);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}
 
float *network_accuracies(network net, data d, int n)
{
    static float acc[2];
    matrix guess = network_predict_data(net, d);
    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
    acc[1] = matrix_topk_accuracy(d.y, guess, n);
    free_matrix(guess);
    return acc;
}
 
float network_accuracy_multi(network net, data d, int n)
{
    matrix guess = network_predict_data_multi(net, d, n);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}
 
void free_network(network net)
{
    int i;
    for (i = 0; i < net.n; ++i) {
        free_layer(net.layers[i]);
    }
    free(net.layers);
 
    free(net.scales);
    free(net.steps);
    free(net.seen);
 
#ifdef GPU
    if (gpu_index >= 0) cuda_free(net.workspace);
    else free(net.workspace);
    if (*net.input_gpu) cuda_free(*net.input_gpu);
    if (*net.truth_gpu) cuda_free(*net.truth_gpu);
    if (net.input_gpu) free(net.input_gpu);
    if (net.truth_gpu) free(net.truth_gpu);
 
    if (*net.input16_gpu) cuda_free(*net.input16_gpu);
    if (*net.output16_gpu) cuda_free(*net.output16_gpu);
    if (net.input16_gpu) free(net.input16_gpu);
    if (net.output16_gpu) free(net.output16_gpu);
    if (net.max_input16_size) free(net.max_input16_size);
    if (net.max_output16_size) free(net.max_output16_size);
#else
    free(net.workspace);
#endif
}
 
 
void fuse_conv_batchnorm(network net)
{
    int j;
    for (j = 0; j < net.n; ++j) {
        layer *l = &net.layers[j];
 
        if (l->type == CONVOLUTIONAL) {
            //printf(" Merges Convolutional-%d and batch_norm \n", j);
 
            if (l->batch_normalize) {
                int f;
                for (f = 0; f < l->n; ++f)
                {
                    l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
 
                    const size_t filter_size = l->size*l->size*l->c;
                    int i;
                    for (i = 0; i < filter_size; ++i) {
                        int w_index = f*filter_size + i;
 
                        l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
                    }
                }
 
                l->batch_normalize = 0;
#ifdef GPU
                if (gpu_index >= 0) {
                    push_convolutional_layer(*l);
                }
#endif
            }
        }
        else {
            //printf(" Fusion skip layer type: %d \n", l->type);
        }
    }
}