#include <stdio.h>
|
#include <time.h>
|
#include <assert.h>
|
#include "network.h"
|
#include "image.h"
|
#include "data.h"
|
#include "utils.h"
|
#include "blas.h"
|
|
#include "crop_layer.h"
|
#include "connected_layer.h"
|
#include "gru_layer.h"
|
#include "rnn_layer.h"
|
#include "crnn_layer.h"
|
#include "local_layer.h"
|
#include "convolutional_layer.h"
|
#include "activation_layer.h"
|
#include "detection_layer.h"
|
#include "region_layer.h"
|
#include "normalization_layer.h"
|
#include "batchnorm_layer.h"
|
#include "maxpool_layer.h"
|
#include "reorg_layer.h"
|
#include "avgpool_layer.h"
|
#include "cost_layer.h"
|
#include "softmax_layer.h"
|
#include "dropout_layer.h"
|
#include "route_layer.h"
|
#include "shortcut_layer.h"
|
#include "yolo_layer.h"
|
#include "parser.h"
|
|
network *load_network(char *cfg, char *weights, int clear)
|
{
|
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
|
network *net = calloc(1, sizeof(network));
|
*net = parse_network_cfg(cfg);
|
if (weights && weights[0] != 0) {
|
load_weights(net, weights);
|
}
|
if (clear) (*net->seen) = 0;
|
return net;
|
}
|
|
int get_current_batch(network net)
|
{
|
int batch_num = (*net.seen)/(net.batch*net.subdivisions);
|
return batch_num;
|
}
|
|
void reset_momentum(network net)
|
{
|
if (net.momentum == 0) return;
|
net.learning_rate = 0;
|
net.momentum = 0;
|
net.decay = 0;
|
#ifdef GPU
|
//if(net.gpu_index >= 0) update_network_gpu(net);
|
#endif
|
}
|
|
void reset_network_state(network *net, int b)
|
{
|
int i;
|
for (i = 0; i < net->n; ++i) {
|
#ifdef GPU
|
layer l = net->layers[i];
|
if (l.state_gpu) {
|
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
}
|
if (l.h_gpu) {
|
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
}
|
#endif
|
}
|
}
|
|
void reset_rnn(network *net)
|
{
|
reset_network_state(net, 0);
|
}
|
|
float get_current_rate(network net)
|
{
|
int batch_num = get_current_batch(net);
|
int i;
|
float rate;
|
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
switch (net.policy) {
|
case CONSTANT:
|
return net.learning_rate;
|
case STEP:
|
return net.learning_rate * pow(net.scale, batch_num/net.step);
|
case STEPS:
|
rate = net.learning_rate;
|
for(i = 0; i < net.num_steps; ++i){
|
if(net.steps[i] > batch_num) return rate;
|
rate *= net.scales[i];
|
//if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
|
}
|
return rate;
|
case EXP:
|
return net.learning_rate * pow(net.gamma, batch_num);
|
case POLY:
|
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
//if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
//return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
case RANDOM:
|
return net.learning_rate * pow(rand_uniform(0,1), net.power);
|
case SIG:
|
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
|
default:
|
fprintf(stderr, "Policy is weird!\n");
|
return net.learning_rate;
|
}
|
}
|
|
char *get_layer_string(LAYER_TYPE a)
|
{
|
switch(a){
|
case CONVOLUTIONAL:
|
return "convolutional";
|
case ACTIVE:
|
return "activation";
|
case LOCAL:
|
return "local";
|
case DECONVOLUTIONAL:
|
return "deconvolutional";
|
case CONNECTED:
|
return "connected";
|
case RNN:
|
return "rnn";
|
case GRU:
|
return "gru";
|
case CRNN:
|
return "crnn";
|
case MAXPOOL:
|
return "maxpool";
|
case REORG:
|
return "reorg";
|
case AVGPOOL:
|
return "avgpool";
|
case SOFTMAX:
|
return "softmax";
|
case DETECTION:
|
return "detection";
|
case REGION:
|
return "region";
|
case DROPOUT:
|
return "dropout";
|
case CROP:
|
return "crop";
|
case COST:
|
return "cost";
|
case ROUTE:
|
return "route";
|
case SHORTCUT:
|
return "shortcut";
|
case NORMALIZATION:
|
return "normalization";
|
case BATCHNORM:
|
return "batchnorm";
|
default:
|
break;
|
}
|
return "none";
|
}
|
|
network make_network(int n)
|
{
|
network net = {0};
|
net.n = n;
|
net.layers = calloc(net.n, sizeof(layer));
|
net.seen = calloc(1, sizeof(int));
|
#ifdef GPU
|
net.input_gpu = calloc(1, sizeof(float *));
|
net.truth_gpu = calloc(1, sizeof(float *));
|
|
net.input16_gpu = calloc(1, sizeof(float *));
|
net.output16_gpu = calloc(1, sizeof(float *));
|
net.max_input16_size = calloc(1, sizeof(size_t));
|
net.max_output16_size = calloc(1, sizeof(size_t));
|
#endif
|
return net;
|
}
|
|
void forward_network(network net, network_state state)
|
{
|
state.workspace = net.workspace;
|
int i;
|
for(i = 0; i < net.n; ++i){
|
state.index = i;
|
layer l = net.layers[i];
|
if(l.delta){
|
scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
|
}
|
l.forward(l, state);
|
state.input = l.output;
|
}
|
}
|
|
void update_network(network net)
|
{
|
int i;
|
int update_batch = net.batch*net.subdivisions;
|
float rate = get_current_rate(net);
|
for(i = 0; i < net.n; ++i){
|
layer l = net.layers[i];
|
if(l.update){
|
l.update(l, update_batch, rate, net.momentum, net.decay);
|
}
|
}
|
}
|
|
float *get_network_output(network net)
|
{
|
#ifdef GPU
|
if (gpu_index >= 0) return get_network_output_gpu(net);
|
#endif
|
int i;
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
return net.layers[i].output;
|
}
|
|
float get_network_cost(network net)
|
{
|
int i;
|
float sum = 0;
|
int count = 0;
|
for(i = 0; i < net.n; ++i){
|
if(net.layers[i].cost){
|
sum += net.layers[i].cost[0];
|
++count;
|
}
|
}
|
return sum/count;
|
}
|
|
int get_predicted_class_network(network net)
|
{
|
float *out = get_network_output(net);
|
int k = get_network_output_size(net);
|
return max_index(out, k);
|
}
|
|
void backward_network(network net, network_state state)
|
{
|
int i;
|
float *original_input = state.input;
|
float *original_delta = state.delta;
|
state.workspace = net.workspace;
|
for(i = net.n-1; i >= 0; --i){
|
state.index = i;
|
if(i == 0){
|
state.input = original_input;
|
state.delta = original_delta;
|
}else{
|
layer prev = net.layers[i-1];
|
state.input = prev.output;
|
state.delta = prev.delta;
|
}
|
layer l = net.layers[i];
|
if (l.stopbackward) break;
|
l.backward(l, state);
|
}
|
}
|
|
float train_network_datum(network net, float *x, float *y)
|
{
|
#ifdef GPU
|
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
|
#endif
|
network_state state;
|
*net.seen += net.batch;
|
state.index = 0;
|
state.net = net;
|
state.input = x;
|
state.delta = 0;
|
state.truth = y;
|
state.train = 1;
|
forward_network(net, state);
|
backward_network(net, state);
|
float error = get_network_cost(net);
|
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
|
return error;
|
}
|
|
float train_network_sgd(network net, data d, int n)
|
{
|
int batch = net.batch;
|
float *X = calloc(batch*d.X.cols, sizeof(float));
|
float *y = calloc(batch*d.y.cols, sizeof(float));
|
|
int i;
|
float sum = 0;
|
for(i = 0; i < n; ++i){
|
get_random_batch(d, batch, X, y);
|
float err = train_network_datum(net, X, y);
|
sum += err;
|
}
|
free(X);
|
free(y);
|
return (float)sum/(n*batch);
|
}
|
|
float train_network(network net, data d)
|
{
|
assert(d.X.rows % net.batch == 0);
|
int batch = net.batch;
|
int n = d.X.rows / batch;
|
float *X = calloc(batch*d.X.cols, sizeof(float));
|
float *y = calloc(batch*d.y.cols, sizeof(float));
|
|
int i;
|
float sum = 0;
|
for(i = 0; i < n; ++i){
|
get_next_batch(d, batch, i*batch, X, y);
|
float err = train_network_datum(net, X, y);
|
sum += err;
|
}
|
free(X);
|
free(y);
|
return (float)sum/(n*batch);
|
}
|
|
|
float train_network_batch(network net, data d, int n)
|
{
|
int i,j;
|
network_state state;
|
state.index = 0;
|
state.net = net;
|
state.train = 1;
|
state.delta = 0;
|
float sum = 0;
|
int batch = 2;
|
for(i = 0; i < n; ++i){
|
for(j = 0; j < batch; ++j){
|
int index = rand()%d.X.rows;
|
state.input = d.X.vals[index];
|
state.truth = d.y.vals[index];
|
forward_network(net, state);
|
backward_network(net, state);
|
sum += get_network_cost(net);
|
}
|
update_network(net);
|
}
|
return (float)sum/(n*batch);
|
}
|
|
void set_batch_network(network *net, int b)
|
{
|
net->batch = b;
|
int i;
|
for(i = 0; i < net->n; ++i){
|
net->layers[i].batch = b;
|
#ifdef CUDNN
|
if(net->layers[i].type == CONVOLUTIONAL){
|
cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
|
/*
|
layer *l = net->layers + i;
|
cudnn_convolutional_setup(l, cudnn_fastest);
|
// check for excessive memory consumption
|
size_t free_byte;
|
size_t total_byte;
|
check_error(cudaMemGetInfo(&free_byte, &total_byte));
|
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
|
printf(" used slow CUDNN algo without Workspace! \n");
|
cudnn_convolutional_setup(l, cudnn_smallest);
|
l->workspace_size = get_workspace_size(*l);
|
}
|
*/
|
}
|
#endif
|
}
|
}
|
|
int resize_network(network *net, int w, int h)
|
{
|
#ifdef GPU
|
cuda_set_device(net->gpu_index);
|
if(gpu_index >= 0){
|
cuda_free(net->workspace);
|
if (net->input_gpu) {
|
cuda_free(*net->input_gpu);
|
*net->input_gpu = 0;
|
cuda_free(*net->truth_gpu);
|
*net->truth_gpu = 0;
|
}
|
}
|
#endif
|
int i;
|
//if(w == net->w && h == net->h) return 0;
|
net->w = w;
|
net->h = h;
|
int inputs = 0;
|
size_t workspace_size = 0;
|
//fprintf(stderr, "Resizing to %d x %d...\n", w, h);
|
//fflush(stderr);
|
for (i = 0; i < net->n; ++i){
|
layer l = net->layers[i];
|
//printf(" %d: layer = %d,", i, l.type);
|
if(l.type == CONVOLUTIONAL){
|
resize_convolutional_layer(&l, w, h);
|
}else if(l.type == CROP){
|
resize_crop_layer(&l, w, h);
|
}else if(l.type == MAXPOOL){
|
resize_maxpool_layer(&l, w, h);
|
}else if(l.type == REGION){
|
resize_region_layer(&l, w, h);
|
}else if (l.type == YOLO) {
|
resize_yolo_layer(&l, w, h);
|
}else if(l.type == ROUTE){
|
resize_route_layer(&l, net);
|
}else if (l.type == SHORTCUT) {
|
resize_shortcut_layer(&l, w, h);
|
}else if (l.type == UPSAMPLE) {
|
resize_upsample_layer(&l, w, h);
|
}else if(l.type == REORG){
|
resize_reorg_layer(&l, w, h);
|
}else if(l.type == AVGPOOL){
|
resize_avgpool_layer(&l, w, h);
|
}else if(l.type == NORMALIZATION){
|
resize_normalization_layer(&l, w, h);
|
}else if(l.type == COST){
|
resize_cost_layer(&l, inputs);
|
}else{
|
fprintf(stderr, "Resizing type %d \n", (int)l.type);
|
error("Cannot resize this type of layer");
|
}
|
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
inputs = l.outputs;
|
net->layers[i] = l;
|
w = l.out_w;
|
h = l.out_h;
|
if(l.type == AVGPOOL) break;
|
}
|
#ifdef GPU
|
if(gpu_index >= 0){
|
printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
|
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
|
printf(" CUDA allocate done! \n");
|
}else {
|
free(net->workspace);
|
net->workspace = calloc(1, workspace_size);
|
}
|
#else
|
free(net->workspace);
|
net->workspace = calloc(1, workspace_size);
|
#endif
|
//fprintf(stderr, " Done!\n");
|
return 0;
|
}
|
|
int get_network_output_size(network net)
|
{
|
int i;
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
return net.layers[i].outputs;
|
}
|
|
int get_network_input_size(network net)
|
{
|
return net.layers[0].inputs;
|
}
|
|
detection_layer get_network_detection_layer(network net)
|
{
|
int i;
|
for(i = 0; i < net.n; ++i){
|
if(net.layers[i].type == DETECTION){
|
return net.layers[i];
|
}
|
}
|
fprintf(stderr, "Detection layer not found!!\n");
|
detection_layer l = {0};
|
return l;
|
}
|
|
image get_network_image_layer(network net, int i)
|
{
|
layer l = net.layers[i];
|
if (l.out_w && l.out_h && l.out_c){
|
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
|
}
|
image def = {0};
|
return def;
|
}
|
|
image get_network_image(network net)
|
{
|
int i;
|
for(i = net.n-1; i >= 0; --i){
|
image m = get_network_image_layer(net, i);
|
if(m.h != 0) return m;
|
}
|
image def = {0};
|
return def;
|
}
|
|
void visualize_network(network net)
|
{
|
image *prev = 0;
|
int i;
|
char buff[256];
|
for(i = 0; i < net.n; ++i){
|
sprintf(buff, "Layer %d", i);
|
layer l = net.layers[i];
|
if(l.type == CONVOLUTIONAL){
|
prev = visualize_convolutional_layer(l, buff, prev);
|
}
|
}
|
}
|
|
void top_predictions(network net, int k, int *index)
|
{
|
int size = get_network_output_size(net);
|
float *out = get_network_output(net);
|
top_k(out, size, k, index);
|
}
|
|
|
float *network_predict(network net, float *input)
|
{
|
#ifdef GPU
|
if(gpu_index >= 0) return network_predict_gpu(net, input);
|
#endif
|
|
network_state state;
|
state.net = net;
|
state.index = 0;
|
state.input = input;
|
state.truth = 0;
|
state.train = 0;
|
state.delta = 0;
|
forward_network(net, state);
|
float *out = get_network_output(net);
|
return out;
|
}
|
|
int num_detections(network *net, float thresh)
|
{
|
int i;
|
int s = 0;
|
for (i = 0; i < net->n; ++i) {
|
layer l = net->layers[i];
|
if (l.type == YOLO) {
|
s += yolo_num_detections(l, thresh);
|
}
|
if (l.type == DETECTION || l.type == REGION) {
|
s += l.w*l.h*l.n;
|
}
|
}
|
return s;
|
}
|
|
detection *make_network_boxes(network *net, float thresh, int *num)
|
{
|
layer l = net->layers[net->n - 1];
|
int i;
|
int nboxes = num_detections(net, thresh);
|
if (num) *num = nboxes;
|
detection *dets = calloc(nboxes, sizeof(detection));
|
for (i = 0; i < nboxes; ++i) {
|
dets[i].prob = calloc(l.classes, sizeof(float));
|
if (l.coords > 4) {
|
dets[i].mask = calloc(l.coords - 4, sizeof(float));
|
}
|
}
|
return dets;
|
}
|
|
|
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
|
{
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
int i, j;
|
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
|
for (j = 0; j < l.w*l.h*l.n; ++j) {
|
dets[j].classes = l.classes;
|
dets[j].bbox = boxes[j];
|
dets[j].objectness = 1;
|
for (i = 0; i < l.classes; ++i) {
|
dets[j].prob[i] = probs[j][i];
|
}
|
}
|
|
free(boxes);
|
free_ptrs((void **)probs, l.w*l.h*l.n);
|
|
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
|
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
|
}
|
|
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
|
{
|
int j;
|
for (j = 0; j < net->n; ++j) {
|
layer l = net->layers[j];
|
if (l.type == YOLO) {
|
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
|
dets += count;
|
}
|
if (l.type == REGION) {
|
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
|
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
|
dets += l.w*l.h*l.n;
|
}
|
if (l.type == DETECTION) {
|
get_detection_detections(l, w, h, thresh, dets);
|
dets += l.w*l.h*l.n;
|
}
|
}
|
}
|
|
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
|
{
|
detection *dets = make_network_boxes(net, thresh, num);
|
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
|
return dets;
|
}
|
|
void free_detections(detection *dets, int n)
|
{
|
int i;
|
for (i = 0; i < n; ++i) {
|
free(dets[i].prob);
|
if (dets[i].mask) free(dets[i].mask);
|
}
|
free(dets);
|
}
|
|
float *network_predict_image(network *net, image im)
|
{
|
image imr = letterbox_image(im, net->w, net->h);
|
set_batch_network(net, 1);
|
float *p = network_predict(*net, imr.data);
|
free_image(imr);
|
return p;
|
}
|
|
int network_width(network *net) { return net->w; }
|
int network_height(network *net) { return net->h; }
|
|
matrix network_predict_data_multi(network net, data test, int n)
|
{
|
int i,j,b,m;
|
int k = get_network_output_size(net);
|
matrix pred = make_matrix(test.X.rows, k);
|
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
for(i = 0; i < test.X.rows; i += net.batch){
|
for(b = 0; b < net.batch; ++b){
|
if(i+b == test.X.rows) break;
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
}
|
for(m = 0; m < n; ++m){
|
float *out = network_predict(net, X);
|
for(b = 0; b < net.batch; ++b){
|
if(i+b == test.X.rows) break;
|
for(j = 0; j < k; ++j){
|
pred.vals[i+b][j] += out[j+b*k]/n;
|
}
|
}
|
}
|
}
|
free(X);
|
return pred;
|
}
|
|
matrix network_predict_data(network net, data test)
|
{
|
int i,j,b;
|
int k = get_network_output_size(net);
|
matrix pred = make_matrix(test.X.rows, k);
|
float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
for(i = 0; i < test.X.rows; i += net.batch){
|
for(b = 0; b < net.batch; ++b){
|
if(i+b == test.X.rows) break;
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
}
|
float *out = network_predict(net, X);
|
for(b = 0; b < net.batch; ++b){
|
if(i+b == test.X.rows) break;
|
for(j = 0; j < k; ++j){
|
pred.vals[i+b][j] = out[j+b*k];
|
}
|
}
|
}
|
free(X);
|
return pred;
|
}
|
|
void print_network(network net)
|
{
|
int i,j;
|
for(i = 0; i < net.n; ++i){
|
layer l = net.layers[i];
|
float *output = l.output;
|
int n = l.outputs;
|
float mean = mean_array(output, n);
|
float vari = variance_array(output, n);
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
if(n > 100) n = 100;
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
if(n == 100)fprintf(stderr,".....\n");
|
fprintf(stderr, "\n");
|
}
|
}
|
|
void compare_networks(network n1, network n2, data test)
|
{
|
matrix g1 = network_predict_data(n1, test);
|
matrix g2 = network_predict_data(n2, test);
|
int i;
|
int a,b,c,d;
|
a = b = c = d = 0;
|
for(i = 0; i < g1.rows; ++i){
|
int truth = max_index(test.y.vals[i], test.y.cols);
|
int p1 = max_index(g1.vals[i], g1.cols);
|
int p2 = max_index(g2.vals[i], g2.cols);
|
if(p1 == truth){
|
if(p2 == truth) ++d;
|
else ++c;
|
}else{
|
if(p2 == truth) ++b;
|
else ++a;
|
}
|
}
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
|
float num = pow((abs(b - c) - 1.), 2.);
|
float den = b + c;
|
printf("%f\n", num/den);
|
}
|
|
float network_accuracy(network net, data d)
|
{
|
matrix guess = network_predict_data(net, d);
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
free_matrix(guess);
|
return acc;
|
}
|
|
float *network_accuracies(network net, data d, int n)
|
{
|
static float acc[2];
|
matrix guess = network_predict_data(net, d);
|
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
|
acc[1] = matrix_topk_accuracy(d.y, guess, n);
|
free_matrix(guess);
|
return acc;
|
}
|
|
float network_accuracy_multi(network net, data d, int n)
|
{
|
matrix guess = network_predict_data_multi(net, d, n);
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
free_matrix(guess);
|
return acc;
|
}
|
|
void free_network(network net)
|
{
|
int i;
|
for (i = 0; i < net.n; ++i) {
|
free_layer(net.layers[i]);
|
}
|
free(net.layers);
|
|
free(net.scales);
|
free(net.steps);
|
free(net.seen);
|
|
#ifdef GPU
|
if (gpu_index >= 0) cuda_free(net.workspace);
|
else free(net.workspace);
|
if (*net.input_gpu) cuda_free(*net.input_gpu);
|
if (*net.truth_gpu) cuda_free(*net.truth_gpu);
|
if (net.input_gpu) free(net.input_gpu);
|
if (net.truth_gpu) free(net.truth_gpu);
|
|
if (*net.input16_gpu) cuda_free(*net.input16_gpu);
|
if (*net.output16_gpu) cuda_free(*net.output16_gpu);
|
if (net.input16_gpu) free(net.input16_gpu);
|
if (net.output16_gpu) free(net.output16_gpu);
|
if (net.max_input16_size) free(net.max_input16_size);
|
if (net.max_output16_size) free(net.max_output16_size);
|
#else
|
free(net.workspace);
|
#endif
|
}
|
|
|
void fuse_conv_batchnorm(network net)
|
{
|
int j;
|
for (j = 0; j < net.n; ++j) {
|
layer *l = &net.layers[j];
|
|
if (l->type == CONVOLUTIONAL) {
|
//printf(" Merges Convolutional-%d and batch_norm \n", j);
|
|
if (l->batch_normalize) {
|
int f;
|
for (f = 0; f < l->n; ++f)
|
{
|
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
|
const size_t filter_size = l->size*l->size*l->c;
|
int i;
|
for (i = 0; i < filter_size; ++i) {
|
int w_index = f*filter_size + i;
|
|
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
}
|
}
|
|
l->batch_normalize = 0;
|
#ifdef GPU
|
if (gpu_index >= 0) {
|
push_convolutional_layer(*l);
|
}
|
#endif
|
}
|
}
|
else {
|
//printf(" Fusion skip layer type: %d \n", l->type);
|
}
|
}
|
}
|