1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
| #include "upsample_layer.h"
| #include "cuda.h"
| #include "blas.h"
|
| #include <stdio.h>
|
| layer make_upsample_layer(int batch, int w, int h, int c, int stride)
| {
| layer l = {0};
| l.type = UPSAMPLE;
| l.batch = batch;
| l.w = w;
| l.h = h;
| l.c = c;
| l.out_w = w*stride;
| l.out_h = h*stride;
| l.out_c = c;
| if(stride < 0){
| stride = -stride;
| l.reverse=1;
| l.out_w = w/stride;
| l.out_h = h/stride;
| }
| l.stride = stride;
| l.outputs = l.out_w*l.out_h*l.out_c;
| l.inputs = l.w*l.h*l.c;
| l.delta = calloc(l.outputs*batch, sizeof(float));
| l.output = calloc(l.outputs*batch, sizeof(float));;
|
| l.forward = forward_upsample_layer;
| l.backward = backward_upsample_layer;
| #ifdef GPU
| l.forward_gpu = forward_upsample_layer_gpu;
| l.backward_gpu = backward_upsample_layer_gpu;
|
| l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
| l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
| #endif
| if(l.reverse) fprintf(stderr, "downsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
| else fprintf(stderr, "upsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
| return l;
| }
|
| void resize_upsample_layer(layer *l, int w, int h)
| {
| l->w = w;
| l->h = h;
| l->out_w = w*l->stride;
| l->out_h = h*l->stride;
| if(l->reverse){
| l->out_w = w/l->stride;
| l->out_h = h/l->stride;
| }
| l->outputs = l->out_w*l->out_h*l->out_c;
| l->inputs = l->h*l->w*l->c;
| l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float));
| l->output = realloc(l->output, l->outputs*l->batch*sizeof(float));
|
| #ifdef GPU
| cuda_free(l->output_gpu);
| cuda_free(l->delta_gpu);
| l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
| l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
| #endif
|
| }
|
| void forward_upsample_layer(const layer l, network_state net)
| {
| fill_cpu(l.outputs*l.batch, 0, l.output, 1);
| if(l.reverse){
| upsample_cpu(l.output, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input);
| }else{
| upsample_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output);
| }
| }
|
| void backward_upsample_layer(const layer l, network_state state)
| {
| if(l.reverse){
| upsample_cpu(l.delta, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, state.delta);
| }else{
| upsample_cpu(state.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta);
| }
| }
|
| #ifdef GPU
| void forward_upsample_layer_gpu(const layer l, network_state state)
| {
| fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
| if(l.reverse){
| upsample_gpu(l.output_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, state.input);
| }else{
| upsample_gpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output_gpu);
| }
| }
|
| void backward_upsample_layer_gpu(const layer l, network_state state)
| {
| if(l.reverse){
| upsample_gpu(l.delta_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, state.delta);
| }else{
| upsample_gpu(state.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta_gpu);
| }
| }
| #endif
|
|