#include "yolo_v2_class.hpp"
|
|
#include "./darknet/network.h"
|
|
extern "C" {
|
#include "./darknet/detection_layer.h"
|
#include "./darknet/region_layer.h"
|
#include "./darknet/cost_layer.h"
|
#include "./darknet/utils.h"
|
#include "./darknet/parser.h"
|
#include "./darknet/box.h"
|
#include "./darknet/image.h"
|
#include "./darknet/demo.h"
|
#include "./darknet/option_list.h"
|
#include "./darknet/stb_image.h"
|
}
|
//#include <sys/time.h>
|
|
#include <vector>
|
#include <iostream>
|
#include <algorithm>
|
|
#define FRAMES 3
|
|
#ifdef GPU
|
void check_cuda(cudaError_t status) {
|
if (status != cudaSuccess) {
|
const char *s = cudaGetErrorString(status);
|
printf("CUDA Error Prev: %s\n", s);
|
}
|
}
|
#endif
|
|
struct detector_gpu_t {
|
network net;
|
image images[FRAMES];
|
float *avg;
|
float *predictions[FRAMES];
|
int demo_index;
|
unsigned int *track_id;
|
};
|
|
Detector *Detector::instance = NULL;
|
|
Detector *Detector::getInstance() {
|
if(instance == NULL) {
|
|
int yolo_gpu = gpu::nv_get_suitable_gpu();
|
|
instance = new Detector(m_staticStruct::cfg_path,m_staticStruct::weights_path, yolo_gpu);
|
|
|
}
|
return instance;
|
}
|
|
|
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
|
{
|
|
wait_stream = 0;
|
int old_gpu_index;
|
#ifdef GPU
|
check_cuda( cudaGetDevice(&old_gpu_index) );
|
#endif
|
|
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
|
#ifdef GPU
|
//check_cuda( cudaSetDevice(cur_gpu_id) );
|
cuda_set_device(cur_gpu_id);
|
printf(" Used GPU %d \n", cur_gpu_id);
|
#endif
|
network &net = detector_gpu.net;
|
net.gpu_index = cur_gpu_id;
|
//gpu_index = i;
|
|
char *cfgfile = const_cast<char *>(cfg_filename.data());
|
char *weightfile = const_cast<char *>(weight_filename.data());
|
|
net = parse_network_cfg_custom(cfgfile, 1);
|
if (weightfile) {
|
load_weights(&net, weightfile);
|
}
|
set_batch_network(&net, 1);
|
net.gpu_index = cur_gpu_id;
|
fuse_conv_batchnorm(net);
|
|
layer l = net.layers[net.n - 1];
|
int j;
|
|
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
|
|
detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
|
for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
|
|
#ifdef GPU
|
check_cuda( cudaSetDevice(old_gpu_index) );
|
#endif
|
}
|
|
YOLODLL_API void Detector::release()
|
{
|
delete Detector::instance;
|
Detector::instance = NULL;
|
}
|
|
YOLODLL_API Detector::~Detector()
|
{
|
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
|
free(detector_gpu.track_id);
|
|
free(detector_gpu.avg);
|
for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
|
for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
|
|
int old_gpu_index;
|
#ifdef GPU
|
cudaGetDevice(&old_gpu_index);
|
cuda_set_device(detector_gpu.net.gpu_index);
|
#endif
|
|
free_network(detector_gpu.net);
|
|
#ifdef GPU
|
cudaSetDevice(old_gpu_index);
|
#endif
|
}
|
|
YOLODLL_API int Detector::get_net_width() const {
|
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
return detector_gpu.net.w;
|
}
|
YOLODLL_API int Detector::get_net_height() const {
|
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
return detector_gpu.net.h;
|
}
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
|
{
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
|
*image_ptr = load_image(image_filename);
|
return detect(*image_ptr, thresh, use_mean);
|
}
|
|
static image load_image_stb(char *filename, int channels)
|
{
|
int w, h, c;
|
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
|
if (!data)
|
throw std::runtime_error("file not found");
|
if (channels) c = channels;
|
int i, j, k;
|
image im = make_image(w, h, c);
|
for (k = 0; k < c; ++k) {
|
for (j = 0; j < h; ++j) {
|
for (i = 0; i < w; ++i) {
|
int dst_index = i + w*j + w*h*k;
|
int src_index = k + c*i + c*w*j;
|
im.data[dst_index] = (float)data[src_index] / 255.;
|
}
|
}
|
}
|
free(data);
|
return im;
|
}
|
|
YOLODLL_API image_t Detector::load_image(std::string image_filename)
|
{
|
char *input = const_cast<char *>(image_filename.data());
|
image im = load_image_stb(input, 3);
|
|
image_t img;
|
img.c = im.c;
|
img.data = im.data;
|
img.h = im.h;
|
img.w = im.w;
|
|
return img;
|
}
|
|
|
YOLODLL_API void Detector::free_image(image_t m)
|
{
|
if (m.data) {
|
free(m.data);
|
}
|
}
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
|
{
|
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
network &net = detector_gpu.net;
|
int old_gpu_index;
|
#ifdef GPU
|
cudaGetDevice(&old_gpu_index);
|
if(cur_gpu_id != old_gpu_index)
|
cudaSetDevice(net.gpu_index);
|
|
net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait
|
#endif
|
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
|
|
//float nms = .4;
|
|
image im;
|
im.c = img.c;
|
im.data = img.data;
|
im.h = img.h;
|
im.w = img.w;
|
|
image sized;
|
|
if (net.w == im.w && net.h == im.h) {
|
sized = make_image(im.w, im.h, im.c);
|
memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
|
}
|
else
|
sized = resize_image(im, net.w, net.h);
|
|
layer l = net.layers[net.n - 1];
|
|
float *X = sized.data;
|
|
|
float *prediction = network_predict(net, X);
|
|
if (use_mean) {
|
memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
|
mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
|
l.output = detector_gpu.avg;
|
detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
|
}
|
|
int nboxes = 0;
|
int letterbox = 0;
|
float hier_thresh = 0.5;
|
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
|
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
|
|
std::vector<bbox_t> bbox_vec;
|
|
for (size_t i = 0; i < nboxes; ++i) {
|
box b = dets[i].bbox;
|
int const obj_id = max_index(dets[i].prob, l.classes);
|
float const prob = dets[i].prob[obj_id];
|
|
if (prob > thresh)
|
{
|
bbox_t bbox;
|
bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
|
bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
|
bbox.w = b.w*im.w;
|
bbox.h = b.h*im.h;
|
bbox.obj_id = obj_id;
|
bbox.prob = prob;
|
bbox.track_id = 0;
|
|
bbox_vec.push_back(bbox);
|
}
|
}
|
|
free_detections(dets, nboxes);
|
if(sized.data)
|
free(sized.data);
|
|
#ifdef GPU
|
if (cur_gpu_id != old_gpu_index)
|
cudaSetDevice(old_gpu_index);
|
#endif
|
|
return bbox_vec;
|
}
|
|
YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history,
|
int const frames_story, int const max_dist)
|
{
|
detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
|
bool prev_track_id_present = false;
|
for (auto &i : prev_bbox_vec_deque)
|
if (i.size() > 0) prev_track_id_present = true;
|
|
if (!prev_track_id_present) {
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
|
cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
|
prev_bbox_vec_deque.push_front(cur_bbox_vec);
|
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
|
return cur_bbox_vec;
|
}
|
|
std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max());
|
|
for (auto &prev_bbox_vec : prev_bbox_vec_deque) {
|
for (auto &i : prev_bbox_vec) {
|
int cur_index = -1;
|
for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
|
bbox_t const& k = cur_bbox_vec[m];
|
if (i.obj_id == k.obj_id) {
|
float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
|
float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
|
unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
|
if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
|
dist_vec[m] = cur_dist;
|
cur_index = m;
|
}
|
}
|
}
|
|
bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(),
|
[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
|
|
if (cur_index >= 0 && track_id_absent){
|
cur_bbox_vec[cur_index].track_id = i.track_id;
|
cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
|
cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
|
}
|
}
|
}
|
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
|
if (cur_bbox_vec[i].track_id == 0)
|
cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
|
|
if (change_history) {
|
prev_bbox_vec_deque.push_front(cur_bbox_vec);
|
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
|
}
|
|
return cur_bbox_vec;
|
}
|