zhangzengfei
2024-02-05 78b0ffc543d78769580fa91842c8d635fe8c9405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
package shardmap
 
import (
    "basic.com/valib/gosdk.git"
    "encoding/base64"
    "fmt"
    "testing"
)
 
 
func init() {
    gosdk.InitFaceExtractor(16, 0)
}
 
func TestShardMap_Walk(t *testing.T) {
    fea1 := "kQY6jkXLevmAG9yBldhYlS3QjY3tjlgMPAiPxGR+4joaHclg6albasU461wSRfE/FoDMBA8mEUwuoBGTIPTOOxKYnPtD92cJMFRlQplYgrDYULXodsY1pWhHOYg8CMRPoWFM5Fmz7ooIVc2irVBThqAJcBjQpb057fdw3na8gAK4vYPavr1UVFo89U1yPGV6eD1xYwy9fiSRPX+PE735VXa9Nnc9O1uh8jyRzTU8nSiCPVx8fLzx/Km8DBRSvbfzAT3FcBs8z+cZvXPHDTzdPiI87qmOOzPLwjucOcM8n/4JPYagHL0NoGS86AQ6Pc3AsrwbvNM75L6jPUwFED3nVve8CjC+O+CsgD37aRE+fOR9vehCMztYmqq9aaVTvcGepT1pJ88916hCPtEuh74rp0M+G2mTvLG1kD19MYE9zV5yPZ1cHr45ixM9ZxQXPgndgzxenSG9B6Y0PPKLhb1x3hK98Xc4vX4/Db4LyM69HQk4vRxbiLwOiOe9/dUSPbLNcDyHWfy8ze19vdGNKD4mTWc8YWpJPQ7RSj6GhTq+yHVAPnODPTxxYMK9hQUiPsN5qj7amG29htPfPFMkLz3G5+e9sXeXOnCzlb1mp6M9sq88vvg+i70XZUY9vwpXPfNEHr7wybo9RJ4+vawalj2U2409oOjsPS+3lj1hf2O9XodsvYOJwD3RBLQ9FZKRPY1Nk73TYUq911yuu3KymjwbXsM9TPeHOgNrFj3+gyc8ssgIPP8YfrxrgpS9URiCPSbRLT2fc348UJzivAy7Kz0VQBo8D/4YPR9pvzysz/W7ujJXPLEGRLyPNAY9KcCQuU71nDzRby48G8gWPDbt2bw98R498ZRePHPMfL3rRoU8QuUkvbASaT06+t68+HpCvRoJrLweRVU9U2ldvRXhq7zHBtY8u5kJu9XdiTuJU1Y7iO/kOx90iD1VYKy8eHkdO7R/eD1Oo4O7QL8JPcJ2Sj2yXzG9X4vNPDsw1rxz5kO9t/dOPGRO0rsqki4969hWPOx+SjuqRJ09+00ZvQMk6zwjK5G8BoiVvIRfyLwQTW8714cKPU0ei7wisQA9FUkAvMr8WLyobKy5jftyvRCDODxiH5q81AIivdZfX7xMmEC9krkivJ1M6zyiBie9K95IPBdTnjwDY5u8Y4zfu7C2rDzQKKy8a9UyvO+y2Lvw8/o8Q7YVu5LH6jyez9Q8OwiGvfi6kTy3FQC9WZyLvKEtlLadTgq9MmjlPEo0GD2lxrc8I3XKOS781juIAP08TI9pPL9y9jsKwTU9GJshPYuClTxkXcQ745zGPEIbJDn1IK885dvgvA93Brxe6f28ZZfVPIwijzww0lq8CCjQu6DQP7tziqY7I7KrPGK25jx56SU9ZXDLvAOwKD34qIi8/jifPA4KA71Q8XY8rAzZvBoJczv2hbE6BMiYvO6Kl7vRbcM8GVdqPEDCiLnriJc8SmIXvYLhqjuHK8s8sIXtO9V48TyqJMc8cTDnPEVAPrzTHIa6tfFOPBIXvzyvn6G8lQ3auogoGzs3wCE9oZSqvJwZlDsFuD89OzjVPD0aqTraHxS8RhorPIzkpTylD5g81+tEPcG8STyCO+w7wIyGPFfc6rtN5/g7b4LyvBT5VzwHXlO8KsorPPC887uYHGC7xtlwPMzytDyjwAS8aNeHPOPL8bsDlWM8lrUCPUAkzTvf/JI5viCOu+64qDwlBsC8wHsLPL2LuLzBU2i7QLZoPItdL7yOMoG8mxFzPB1FUzzawoC8/SS7PP++AjqY3I28zfMVvDY35bxPkx+8MFBzO8p1FbjhIDe8fgwBu6Ab/TwEcty6068QvIJfPbzy15Y8juh2PNeaYDqOssa8pUcJvU+qO7zpWC29IRhpPD7vvDuPsZ48hGUHPGdtmbwMiVM6upcMPev+X7wfCNI8rbSKu9xg07wkKxU8jZwmvLNbnbxVFJ25ObZdOwOIybxqbji8V+RBvNx5qzv8Xh88rHcwu+2vtTszUp27UWOLvI9dRzxWv6U8ZLazvOycVToAwBA8nYyKOw5JGLsxt8M7eJk6O9vcurygt2c8U4CxvFJ7ijv7AaA6ckmBO5EvgDyCGTe7U2RkPM1fazr6uSm8MDJwO7CY3zq4szw8p7nAu1Bembub0i68UgwzPMxCN7y+K468bO89vGmnPbyplzO756VquzI9+DzuUyc8rgy3upUo77s7SKU5hhXxOu1+PDyYN7E8f9jVu6w61ry3yEO7da7Yu6jF1Lr0DFY7D2QGvCTrZrzXBIy7ciIAuJUwvjsnDVy7u7PNO5d6DDtFG5E6mrdIvG2fJLxDOfE6Eh1yvHaqhbrw9Y47pq2pvHLSBzvYKvu65La9u9wyHjzTCc88hVRcO70kEDu4wAQ7NrkUvJ11BLucwJm7wdFCO4ELCrywfUO5QE5nusPfJDxPZIw6oeCiu+IrgLqxcfE7FMWfOqHBg7qgz6w6L9P0OpI/Crs/3Pu7IFs6POK/hzt3++27ow54Ow5ThDsnau86F+/XOtmExrst4Ss7j5SrOsui+bux8+a7AcL6u3+vPjtFQPo74eAIu9uBEDuJ60G7FvjBO3ohszva4AE7KPGKu/S/YztoZIE7OMVXuzE7xjqj1cq7u9DGu2u4n7u+OC86K7pju7CxYLvsGHY54+fHO6nNi7uzb5o7eUIiOn1P17tKqiI60/EHuihlW7tM5xY8+rEvukdgXbuP0T062vdOuwnXADo7iZy7Vo6JOAu+orvIAWU7yyyhOjSJ9zs6TKM7rOhgOxuBpbsK1KW68yjjuoPm17mm4Bs7CcWTu6Rnhrss4A67TwAEuqOVl7tEeS46/ZCPO/Iqb7sMe4M6rJTMu2Q1cTotvZw57jAZuyMuHzvxnDO6Wqd7uj9SG+91QwJE3FjL79+fDkQmMOiEP6k0ZT4dhFQ3C552Xrln0/xpGdrC5MqihdnmqwvQMEp6ZbC5gzYOukKtMqBnmnVlBY5Ax3QMavrmUqfxI9g9nT7uWMIlZn1nFLAJfEx+4VEOIxmDL4R+FtYmCfr+R5k+NvEBW1l/w24xzOp9S83OWvDo3SFtXDhFg0FAg4jZwb/MwxsmRN+UdayA8/hPwlNAqzFiGY6aXxLcn5VmelgmRx1CbmEiBNfPhMvI044dFTtPeFXdE7Tw8FWHWM/ffxj9wodf5Ys3tREEf+SSnPrO63MkyofZu3kvQ9IAJFIZIhaggfstubE+vTIkUc4fIbuTRoYbIEKVUIZoUaq6a8zQDU7NOgmAeMaynRmCvDo+UYDFbaEIA/KOa0Q6J7AH+L1Wx/dfSHEn+g9Bfsx7vB78goyei4+SG/vWVSSHXB5Gs+U+Ey+wOyvAfKmN+Gas9ek5lXXJKJHFAObqiEQJzvfvDgwfv0dLgMT0Dr1cu7NG9Eq8vw=="
    //fea2 := "kQRiM9/cYSC+HdW9KIP6PqdjFF6iRajqHzTPAT5UsJNxFMY08ChUsEYqbm+taa1VzMG0bwhdWyiSLCnQgNpk8e4rJt9Ue5CbpQALVGm5qjZ8X6aEvQKtUC7XIq+yhqGhssiCCEQUo+oUrz9+aum05kpbbAheG1iM8no9pQLeSLWoy77s4GPX9RMYdH0CKWVMhdJU4+2tceAprocsjtDiN5yhJX4F/XQZFuiXGRP8ZpjQu32+ae6gk54pvy35omWXRYsWSomLY6B0+rqH+CEhydyeiUeNK9otVZtaTz/A54rNjTwKZ7C9WlTcvWYu37zLhfs8mwstPRUyjb0VoKA96tVpvT6rIL1fiHo99bX4vGy2iDvp2EM9QruVPJ7KlLyFg5y8Gh33vO+a3Dy9Ja+8Oy1cvdcDRD2VZNa867/fu7JsKz3byDY98McIvRFyyjm1Cas8J6RyvF2ZRj3c4FE9FoKjPTunIL1jWMy8vbNrPT4e+T22QLe94uKru5LNir3duse7HGdIPXlfXD0wkRU+8ClZvmRnUT4aN708d4z0urC3Rz3iVC49+74Mvh0f4zsuUDg++U1sPR6brbtDKYQ82SuHvWKBQLzHn8m826wLvmxZz73hbA+9ltQmPDtLCb5Oo6493VN2PJOJo7zrSxy9LLMfPtIbWT1yGEs9zC/sPQv+Nb6muDI+DqS7uy2znL1wEjg+PziNPm9Drb2xav08OWqxO8VNnr3Iqo892m6OvehMqz0D7ka+eaU7vXyxPD2r6vU9fO06vu2y7j1vPl68aJGqPUJfNj2qayA+ekNjPanQrLxI73m9c9OAPYH8qj2U0pM9lAGqvYysNL3kP4a8dw7APFOK/j0dwbc8rzsYPRjI5Lzl2EU7SBGtPD1knL18H3U9knjCO0twWT0GT5m80y21PGO7Yr07MkA95H52PNjt5bxrd2883N22vFC1nT1kH728ekPAPFoHrTxt10473X2xvEU+aj2DM3k8U80+vbb8HzzQk3S8cfuHPNyZfb2Nv3G9aQfevCmbiT3KG2e81XGAOu9Gxjy8RlQ8B6zAux6KPbyGP/s8ITO/PfFEQb3EJSA7nFd2PdCjyLxF3/c8GkItPTI8O71/ylu6uR8vvQPiDzuAHf46p+syPEWeZD0bvyY8OmKLvM0duj3AcMS8tzuqPIy0wbzLHJ875LicvCYmzbxIbe48C+CovFliJz29GBE9Xg+gPMUFO7yWBQi9ncemPOjmXjtFLUq9RmeNPEMJlb0GPOq8qx4pPSpEdbyLUjC7yLg6PT+kmL2A/3282G41PDs5krxMHQi99itrvAMvn7uFtYe83g20O+fWszu0woi9c/IuPXzNkbxa0is76YxEO6N8K72LE+I8qfMiPSFGBT3AVpE8knYLu1qpAj13Exw8q55QPHtDSj0NOBg96ihXPW+Tg7lANw49lV7DvBbQWLy3SJa8FCOovC/HQLxOyZY9PkgevMzQB7z1RSQ7aMjtO8/MvruTS9o832VDPdbgYT2u+ay8QjIoO8hsPzsEl6g8wZyxu74uxTxsL/K8XgWbvKu+ULwlShe8R4AHvTxlBTxKxkM9aQw1vCA7zzqxSuK805IEvesAMLwncrI81m/kPNcOJj3z3a88aRJnOzXCrztSZvA6iu6xu+A+Ab1h66Y8/8k+PB3oBz36Itm8Vm9XO5raVD2viJQ8FNuDu60VV7zMPIc8yYyDPVl9VT3e0Dg9ms4nPFQ4Oj3OeTk8/BSxPHuG6zuaCyu9eraEOwjqBr3vT6E8B8MDO165wjz5b6i8uSUVO9qxcbzYgTI7LoVnvBMAXT20ZhM96E7RPHwR67pYAXq8F8xIPWX8Fb1kDxA7epwYvT9vvLyPyB48745+vPJ8zztzHwA9s2HdO5CovLsbJRA8SPrKvM92tbsOD+c7sP8EPIgRSjw3p3w8euwVPStFl7wJ9q88Ss/zPJG74bxVj5u50/OCuwrYDzwvLBg81qO9vDwZwLxZ4xG9M9JcvNEGaLwRnRo8ATCUPOnGJrs4+IY7BW+wu5QlRLyCSHI9TtuMvLcsJzyG4JA8XCuWvA0SpzwDu3q8a4HdvLG3M7yeKPQ72KHOvIGdFjulmnS8mwpGPFCT0zsmfiE6EpUrPEqOiDtvsGe8E3nyOyvtOj3gW728ECKQPJb/6zuZekM7fZD1ua76UbrUZ0E7NpmCvMhoajyDbCa8C74FvIHLoTqZ4kc8PsmRPKNoUzvyHd08KO1JvFDIVLz8mGu7AUPsuwlwVDzj0Ju8bJtiO4QIULz4Ees704cqvOI2A7w4dQS88Fx+vOkHFbz4cBw8DPloPAHuDjuzw5m6FZO8upKukbvjQQ08zi0gO3ybjzwUwbi7+KzivNUZx7vZpgC8c2+Au7lv6Ts3W9m79S52vNX9K7sp5VG7IQWbO63/QTpnIgk8AKnIO5AJXLuDl/y7isoAvB84XDu9r4S7l2aFOyXEMTnWGDW8lk4GuyEYArw0A727dxuQO99xojyyp7u6UwoCOxMwPztOWee7jngKvGE+N7vqz0w7AtFIu6IBqjp1so+7NL37O6pqgDqBmYu7aXE/unMTezvdpvU5aPK1O/OwlDvUWjG7nXI1O94hILyp8hg8Z1WHO6QiDLw33cI7o/MaPBfVaDvBCKo6AECvu345ZjtU/h87NbMivAGvfLtbfnK7t2g4uwRgkTt0w/S6ffsBO/X7LLt/C8g7YyKYO6v6QDs8MWS7yf/vO8vlkDspv6C59nmROqsb/rtqPQe8Uv/Hu1sc+brzY4q7+EfWupsUA7v9Sfk7V1Nvu6UpIzrPdxU5la+gu02kBLvuEe06VD+au2N6+TsZFi83fLh+uz/byDigPFe7WQMpO8Jo6Lv8JsA7HxV1u4yeNju7vxI7E9MVPDSPQTtjJUW5BIvSu3iVlrrfNxO76205OhcYgToipZ27AjCUu8ejRboHEes5nLFbu41aPTiCh607rgn3ug5jGrsuvmG7ccZ3OT3NIDtPyQi6S9wVuqOCfzp7lyQ6jt7MR714E7AlFaAy7PE1p0kA8BA1jOiPiFTUwfCnEn+H3sdGWNr2ffCYr92K5IbU5XjkGwXOq44jgVAVKmOVsUJd95o57xkriMgKFK6Q6JQJzrAPnV2dwd7u1glSbLuUyrMwBaRJMC4TOkLCyyxY1fsK5JpnglxGcTRQw6EMWW2/inNl1KOT597Wq6sDBIH+Dmaadun3vFwsDiHOGno92QawQNpV08M1qm/grnRiroPJSfmzQbcRbsUyPeCterqzLPuOgc9TtnrDlyo5+ti8xSK3eWNwitE3vRAYa4vTH7fPrjqgAvAcxolGAIUfvUtBdsWk5lF3Hw+HOHoTDZrL3UkGfkz2mhSB4RQHAdFSQkkY5zFqYFB554nz+5aPx3TZzg=="
    fea3 := "kQla5AZyApyfbArgv21sj1BUIbMieoHeZoi87vcUt/qoE+CvhuJMJtdXB5jEdCkVyErJ6sVMyS3VhhzNm9TJROeq82+NQZZmmJ0AXRIpc9t0PsY7ipFoYBmFL7Va+PpDo++yMjFJmcrnmSn62ycdPWg+xr02u1m9eLeHOyTWij2b1Ck9C5qUvXImWj1JT7y8ub8LvXlnbjvS2m088CkcvLvDNT11t4c8J++ovMH6kbwX/J27vfQNPVycu7yIDiq9HPGjPFd2Aj2IxMO8aalEPRXB6zwHEJW8oZKDO7gmgrvii0G82ctCO+56PD0Iy4Q9BPYdveNRFDuX4WA9VIkCPh6ftL3rhc+8wukWvhn3WLxfgIY9het6PT4OLj69MYO+6BBQPjErDzn/NoM8MmCqPaP4Jj0+Dfy9h5whO8s6Qj7L0qQ8PZ4CvcjXyjxOBnG92RYBvVKGdLzeHBS+XGcWvjq5Tb1e+ia9y8r/vRopgz0/8zA99TPgvPISn71u7iQ+G0kdPZMq6TzSJC0+TA8lvvKYNz6TFik7LD/qvTZTIT696Ks+Of6SvTaFkjyVfRo8fWbkvY8P0DtniZK9ZcuxPWh3Mb4OS6C9PCTrPFFTmD01Jh++wiyzPe1Ddr3UgrM9pGArPeXpED4v0ZI9y2q1vN/nPb0WvlU9zKvrPSdsej16M5S9JsWru94kd7wG0FU9i6XzPfTvLTw3mlw9MgglPDIXAT0xWjI6jnVRvcXRfD0kp7g8nt/nPIta/7zcCng9zXb0O2g1Hz1r59E8S8u9vFUsIz10heq824cbPbY2Tb3qM/g8cSe6PI+gjjy2DvK85pM2PQxW+zw0I+u85nMvPAteWrs7KlI9JMRFvYeND71Qtcm8+mQ3PSiuE71olA+8Td6TPIy0wTwiBcU6Jg2UOgyoRDxIGJQ9EHQLvRGhDTzO7TA9WCaXvLFipzxCUI88MjtJvRxdnzzVVRK9eEv6vGiRgTwc2Ka8sPkwPcfkaDxgUt67GHtzPUExJr3tuTI8IXW6vKKDMrtsMhy92h+yu0Ucxjy9u9a82WWzPIk/vbuGCF+8W3jqul6KSb2Rr248wDnTOyUCO72Pgo48GckjvTwAhbybhS89IQzUvKPrfDw/D9w8KYQFvZCaSjuXedk8630TvPuIkLwEtF2800MOPAFcArzIt0o8NPLBPBhmaL0/tcE8hhfOvALX7rvve9+6of/9vLD9Hj3fpEA9zsfOPEiR6rtJhtI86Nm8PIPGujwu3/G7ZcNxPcAUID1DEb08di7+uxYMoDyHuoS8v19XPCItJL1ZaRC8bPW/vDx2Nz2hujQ8unJcvM6yI7yLlyQ8ubGEuu86rDyse9g8JKhKPWlDz7ygj/48XJlovHnTyjyCsY+8uf+WPN+3NLybOUY7yQ6HOsepDbyxK+S8kNcfPDNvrjwaA0U6NMRlPJJWvLxyh6W7LpGBO4bivjxcluU8Ny7fPIb4njyJ6oQ47pniOhXRhLsXtp48azdmvCfCv7ulWNa7PPgAPQxMwrzAeM65oWJBPReTyDxkvk26dSdFvECChTxzByQ98iTgPBxVPD3EyrY8VDzhPCx0+TvoU507953LOx07N71hgnQ8LyvFvHs84zwC5xW8rxIxO5wsr7mxJQs8SCv/uSXlAjyauge7R78JPayS6Txkbpw85UxFOmKt3rtOgA09rp/CvENxWTuaXsW8wugLvDIa7DyWLW+8ns4fOM+YvzzhD1s8EROcvJ+zLjze0S6874F2vPwCWjsj3tS7McilutedlDwjSbk8XA4bvMaGGDybzck8SnaGvHtIjzuQnBi8KgQ5PIjMpjw7gYy8bfDovAIeJr1EQ4i7bMOWvAF+VzzFKFQ5PIENPFsbeTwMdjG8n9d8OypiMz3VBIi8+7msPOFNr7mkEm285hc/PLQ8WbzzG6G8L+6quxpqAzwoKLu8+H67ux3/S7xN2ZE7wyApPDntALuD5xM8iTgjOzXqe7zMhCw8jvcHPfDf5rwbJuQ7PyYJPHATlTtzxY46rmxcOp4ZvTu78Zu8R0QSPIkUR7zESHQ5NsXHuQ6ZLzz3woI8dSk0OWkEbTxwXVa7BsYjvK0GZrsiY0C6sMNbPGp9MbwQeb671nz5u6cEJTy0b3y894JEvC3iMrzNl0G8/T/ou8uEuboSSbE8kUcJPPxkerqp2aG70Goeu3AlqTsl2cw75iSZPM1MFbySpdq8jHAZu/EkE7xU7VM5HqVFO8owJbzG2jK8yxaGOjuj0rrNTqE74cjEuueA+Du2pp07sPiyuolVPrwZXTK882yuO1v6ArweVwE6RBHRO8RqhbxPfRa7h++au5Jiy7twfkA8HB63PCyhnzojwGK6dXOkO/tCHbzANtm7LHESu8hUFjtDE/+7VMMWO0tK2bo2Kt479dyWOdnt8rsBQSK7bxnJO/+uyDqeYhQ5/tPqOtbTUzrGbpG6DNzou+N8PTxWC3U7qscKvI2tmzvvGK07BKkLO6I6W7p3esO79acSOwUzWDrMQQC8Jj+Ju+kk7bs7SfU5FpvdO2jWAbsnNwc7GJ5eu/zF2zsPQsU7BEFsO5zbkrvS/6U7lJKCO/QOdLv5ZhA5ga2tu/m517vnaqC7S4P9utUVubsBCv+6zwAhu6LB5Tuo63G79ZJvO9ZLXjm6BQG8xamsOEQIajpAw6K7TRUiPE+qELp1RzS7I0AhuHblVLs8ytk6H1fmuwm9Ejutx1S7WGZ8Oyd5gTq1Yw08ivZ4O67NRDuX/tC7cP4Bu12ia7tBxQE64gYbO+OXubu8xU67/jzjujb7KToFbXe7IYheOlFdoTvZ30+7xX/duTOKqbtCiAc64yTNOj0RJ7uAqeY6+fHAOlFtYbqUDoCYvuasr5WZOZ1a43DcAT64F2K/REKHaazIvSrOUzlQ7Pc4majNM+FsjsXca8ccJd9/5CTCbY5vN02aBqDTV43Mjyd1XltYy+keqVblxnvFRmHqCc56eQbIFA1p6GT3tfQgLFR7hCBmosq9iZE6UNebPOFrtltxf29/6Vjj4Q/ZAjsufr9P5GMao+2r3T6Eenpm5TLCWLIz152MvH+bloLXxQGYFeb7MIrp22gpYeOkyMnXiyKKvvooS7eo504rvxUtWCoUVVqfQDcJaZjsD2K25u3Zcq3Um/iNROHbcKHwnfocslF3UpGuW/tISQyqAPKZ2mVHsAFBPkYjG7fFDVbBKQkToVylULiimQKuRQKh390IJ44KaM1RjOgJU/VfFSBpKMHFzhN+ca2AIPKDwtNhyvrw1WS+J/GoMEWfj1q/+YOCv1KWPsNEv+Q4Q6cMpXMHlklsVnBeAKGjnzL+YCyC4uvVeSuZvup/9i4nA9SbC2vkeMJW1sL3e2MqesNW/KdD0iJubeBa7diJFtxesefKlw=="
 
    fea4:="kQwXpmjF9YRHHLV4mu4tePJgNl8AuCBWfBEBbMsYI8CzOmcdAV6hSXpYwV1I7tY7UA2bUMW7pkPMqK+ZwdJadQ7CkhAiNVmcjhz51gzQE1zerq2la1ToOP2Y0r9sLjV78ciMFP7msI0Dq2UPfXlsXCgaA5Nv68xthZ8t8s5jbsAs+9Qs4oa55jIg9rCZYw3CfhFX7fwkW4LEiaiaD7x+ArO9BkHbvXy3TbpkOf08kEKsPXFPDr1uyJE9BLFNvVjGG72OT7u7dCkfu3Lx4LvfxB49/fEfu9/CB73ju5S9DhyCPOxfCjoQqHS9L7Yfva7X2Dx1nmO8q+vWPFWfyju5Ogk9tdgwveCLGLzyxkc9O4dWO3sS3TwtfOU9pZY/Pe3w5byT3z48NqVVPR/BDD7ny7W9eR5kPKeLg73/PDO9E0CAPekhCD2klhI+wABXvgFgWD5Y3W68iG8kPecMET07jGk9IOUIvhXaCj33jBE+Nd6WPPIEnru2uew8I2hyvS+ZyLwOCFS9GiH5vTyu0b2UGC+9UTYnvD5O8L1YEV89cSPSu5GMrLvtjiq9kqoxPl3nNj2hAQU96UdEPmKAP74C+yo+lE4kOnzQtL2a60Q+W9aaPpcbi73UQzc9jwNwPBKyw73nWQU9PxSvvRpCrz0q5zy+XeFUvTD+hT2DG6E94Iwtvvcs/z0kQjW9Bc+lPfJ1iz3p4hk+90JkPRIUMr3yu6i9SZWtPQuCnz3YFZ89OWCHvfUjX72usti77HPZPMkM6D1zJM08lP7OPML3Y7zG1I670geRO9Npq72T9609re8NPc08yDzSN/G8tY2UPEA8Abzg9D89Y3/QPJwJJ7sHaGO8p0iKvN+wjT1GdJy7HWcnPX1DYzzj2Qo8GCotvf8XHz3pPYc7Vt2Bvcd72Tsmzca86TIIPc1ME71hyYi9v3PXvB2FpD3oxEO99aptvIO0lTx0VII7m0zJO5BNvbzuEKk8Bc6rPRoVvbyHcpa8B8VAPRjcorwQq9o8mLV2PTG5LL2ZbIQ8ICn/vDqBM71qYlk7/isKPAsCMj1s5Hw8oTB4vBnkuD3byNW8Kx4EPZk9uLyLJxY8scgUvH6Xlrx4CwQ9Bv7uvGuF6zynI4o8p1GFPD06SLwbVia9g7ZCPBg5Rry2Vxe9aelJO8u3iL1HL968zx5XPXbaGL3N/9M79l39PPHCM71Gn1q8unyRPLFnX7woRuy8+QVQO6pSpjwvEqu747ZePGAx3juuFIu9+bwFPdYcHbzdTi28rSJOPLazKL30DcM8OoMPPbhO2jyxlF88Me8/vI0D6jyTnuA8kkwePNsBNz35SBY9PjQuPdYlf7uveQ49UjirvKEuIjr46pu81p6rvDs2hryWES49k/9gPJpYKrwSE8I69cu3OY5Mj7tBm9c8bF9EPcUPej2jYiW9xLehPIKXkLo4Znk8JlhuvHKmBDw0br68MTwrvAGCRbv7kuy8xutfvPpUgjz8Hew8fnIYvFj/FzyznRW9GMlhvNa+OTxlMls8kLPuPLFmPz1r4ss87ZPKu0RoHzzdlPs7sr/kO/VO8bxCyaY8AD0FPB2PHj3Fq++8CWuRuirrVj1CDHg8MlIkOldhgbwEaDI8ObpTPS/gJD2CM149Qw9fPGFk0zyuO3Y8GF+mO+wmHjsmuqq8I9NvPHacobzXVY88ZzCFujVtIjxXuGG7zqo6PIgETLtL0ok8xsTyu2o7CT3/d6c8mLSkPP51NDupd2m77nYOPTndCr3Lc4Q7Njn2vNVOnDu8za07N75TvOQkX7wV0u88Yq5YPLQ77rvE7ag8nTOgvOxX/buYTXq7Y5kEvJtMD7undpA8oblIPM1Ht7siZXA8ZPARPch0pbzmoUS8BxO4uuXCJTzS/JM71Tw/vDCgpLxKFhO9cZeIvLvXBb3cpFY8sD2dPKDoLDx4lDA7JolJvGdLebsEwjA9OlZEvCAOnTwIHyE8HIWyvFN2gTz0RZW8MMDCvKgUFrvilWs7VunfvITUt7uHHDS8QetGPPeMIDyfK5i6RT1sO9a91js/2328ZMgFPLL59zzn/6e8tNQnPMOjzju1fg07906it7F9g7oYFZ473rpovA3nQDxMDqq8/6L3urYvkjtMMiE8Q0mmPKShFbtz65Y8P+8wvHEOPbxWGDS7Q+cmu2rgRjyMrXK8IROmuv4YQryd3Po7q6cFvGWOabyy1R68Tm1uvADz2rtUtKU7tijHPI+jyjviCLI6GJhlu5A13TngERI8tLe2O3xurTz+/4e7pK/WvI4uoLtxEey7O2snuwck2zspfyy8F0aUvKNGSbonJ4q7drjWO+IHTLv97o07xzyUO6Y1mjnQzS28R2UHvGLPMTuU7D28Qm4xO0B7CDsqHH287//9OZV8hLuuu8S7yX8OPCScvTzyCXo7f2m/OmxMMzt71x68wXPBu01jb7tngQM7TLCgu0+wKrpWsBe7sKEWPDjm+jlErhW7017Wun1WsztZaWY7kWKIuIFFBTspZX+65ySDumerDLweiRM8oCWPO2whGLwq+bg7IEHvOx2Zajv6QxQ7Dcm1uyMbOTuE5hQ7rJEovAgVv7s7gaW7uJs+Orfm4TvBXES7lzM6O+pIbrtz+6I7mdCFO0mQ6Drcpp+7aqOHO94xrju6mg27ASCIOuS+BrzLdge8WpeKu5oRZrrS7227oPo4u6hXWLrz3OU75CqKu3fdWjvCsUe5C7POu3giW7eskQg5+JVFu6HGCzw8iiK6xjxqu6Xn3TopwF271gQQO/P4yLtH6gI7gC2muy6fbjtGZ/s60/H/O7oUjDuOlNk6akytu+lRF7tLtMC6Bnn7t4jGgzqxQbu7wAiGu/JKqrqVEks6KRx1u9dmrTlTIK47pbJNu7ovZzh9HaG72WcBOv9iSDodZgi5efa7Onk80TkpV+45Nk5aIbc2/nrOphpb9d30wIOVKB2xspQJZ46hCY4zZcWBwOY59ua0xo7OIoSsGEUwrm5OYSLja4pyDZMCQPjHwrmu/LGWsXglgZuqLrTwX2RfrsaCkjINBj+gCICa0ENVgEEHF/OAPXUd56PR2AQ3ObL9u0YwyU1walbwBic1W6d3Y79r5PzgAuWF1L6JDPc9C7SEPH7RrOkpnu9R1Ev4TK+5t5S3mZadH2xcqXhV54MLbL+JP21zaAxkueGvsy5gbub0JoCMw6D4IUpydzP1gp+2Dd8kgEkx5QQUlbhC9icq602reRJMcjSX5KvK2y9rkjxMt72V6aOa/TpTQTF7ax7JGJfbZAsR/O+9yMzsNWAqgRjoGAONsgLHB0T5gq8ZTMixKS28Oyut+PN75inbEar0+cP3iHb6UH4/SwHvZU64F3jm1LMSg60G/pQw2qXbz6CfyCkXw3qVA8aW8yzlrERekxkTpg=="
 
    r1 := "kQhGcIS5eGk3Nz13ypDQ8LqrW5tStm6sM+kPfoM7XUbro7dwXjDaZ2cY3jOpsCRkXH8ArjdvXKwHsrxMwZ09o/CRPXqPaD71NIY+h9wcvXHHbb51tWK+IpUqvXtX4L0DEzU+8XmGPTgxWb2mCgG9YdYgvVc1kT1PhNu9HjkAPmCRKb6lQ1c7XETevYydzr099Tm9A8SVO3IjWz5q+bK8TecTvJ1PDj6aZMm9uSNEPkkAnr0j7Qk9tcjVvQennLzY2/s9/exJPYXNAD7Mp6W9tu5BvnHFfj2mbj68OoedPZp/3L1Ofxq80hxVvWkPrryfahA9q3R8vDWECLwUUCy91zSCPSpS7byC0As9soSCPfM/xL2FQFE9DAcGPetNNb34k6q8CArpuGsn2r040za9tg4cvloH4r1LNIU9WsqHPVP5Mb3QgAI9JaaAPcx4tLr563K8LznXPVfIr73LotA9qCr3vOyPjr2+UAw+xKYOPrnfbD34SAi9PjAYvXo8wL1UIbu8wCL/vd5rQz2zM8A8WqmGPPcmij2K3g89zmrbvN4HuTyzAzC9ngHCPdCFory2szk94jkPPUkxj71yk7K9VGEGPR8RbD2NHKi7diecvYwIND0N8ta9bv7KO+5ovj076yE9pbuoPFWNLT3vS6G7vRuxO529cjyBfRI9ZnsyPQ8kjbznaZm8O2ydPZa93LsLWLs9CXY7O7XyyTy1jYE80qJOvJyVyL1P7k49wg1IPctzkz1//PW7zOBtvAlEMj3cdfO8payHuz10Wbytz+M8EjsSvJ3SQz17u0A8zd3Gu9oTYr16SdO7KiQMPP41jLwNVBu9UUjvPOlhHT0ePy89ugWXPHEbgjx8Klq8zm0VvX5XobxAGIO8sYeePLl0ObqC+0A9dcJ5O/RFE732GE06D31HvH0iqDoFeqc8zMikuwfQJb0kSnK8zaHBO/HohbzJ1FE8CaU9vEvyb7w6xY68kYQLvXiNVLyR0Qo9HTOjus7niTsmon08PrmcPLtxIz1Nnw078PgKvO4HVTz6Bju6ZBV/PMrU0zrE27E8YWjBvFnIUTyE3pc651GnO0PlhD2mAQG9HBveO6GQF7yLfdG7hp++uvqdjTz0xFM8AFV1PMgnoTzGVPi8iOwHPJ0v0ryk2xK8/UqKPKg8w7rXNWm80EPfO/bQsLybKgA8Wl/tvMx9bbzW0Qs9gWgVvd78mLzW2hS7/y67PGO+ozwmdUW9bVnGPIPDQbzy+bu8dmMMPWiYwDtEkAk8c+CfvMGcLjx+eXq8jvzwPKlVe7uWJTS7moPrPBRGe7xIdba7ZeEiPLKO1LyCiyI8qKgRPTKKjzxV1qi7DTjXusrUQzylISW9NsXEuoqagLzbtpi8Ey4nPI3cLT19mKU7vk9zvAChUjwJruS7+9zWPLVyurxrTTK8we7wvOJdTDxzC8u7tlmkvHdvsjxztiQ82F1aPOCCGDtQYS08jxSHu1b/ZLzi3mC6IWUWO7ArhDxfKRs93GKhO2su1jwpnoA8L6ziO2lKSjx190M8fNlkPK5VlDyk5Mq677kMvPEQw7v/DI28PFAuPI5wQL1q3US80UalvBltzjvyzTg89RL/OVZTAbzRjyk9ckm3u0Wo9rx6VF+6zDCGPDINnTxobsY7HJmJOuJhErwJyL+8/Yu6O6DKQLy1OEk8CkaTunvChDzIV+O8z0FNvIHnozuZ3XU8hjSJvH6srTwhkBc8e262PI55z7rFL3U7dWpZOxN0JzxmHg+805fTOzB5dzvBZgK8YAAOun5jfLwfxDS7ALz8O5alWjz4CqK56xKWvNXr97skNYy71Ljzui4DqTy5qQu8bzbCu41Cm7y2+he8SSulOxzaPDvGiDG8zO4EvEZpMzptf667H64WPFIfsLruVTU81hYxO90Qwbmyq/e7BEvUO+ne3TuLYuc7PNQ5O8QlNDvW0Ie7xUn1OhEnPTySjSg8zPSfukD57ToNeUq8yF6Ku9ukJDq+x/w6/5m1PL0XSrurGcm7rR7bu9VD1buWIIC7YcjYO9IGvztf6SG8x5ZHuy/XU7xOPd676KY7vL5KBLzb3xC8qaUIvAevELoJNyW88FcQPFYvEDxL5Vy5ygkrvGMq0zuQWe87i982O4+cHzxZ4446OF8gvCYrBrvMX7K7/hnRuTBgpbv3LgS8rj4QvNjlNTrh0yq8NrUxu12URTqbH3I6MdbEO8+ObzuAzD683ZewujqccjsJOAe8AMSZOy2OIjxSTza8thACu3ZDMLtMG+Y5BXMROkxrjDyKem27EECUuhSbFDrd1Ia7PVR8utOmrrtF8r47jMGau4TQNTuuNoG7oENJuzGoKTukYiQ7dCuXu+3wwrnYFok7vm35OhJP5jo9aK66EWB8u3RTwjqhQoU7MSHdu3b0U7s96Ji6pX0TOza4Bbh2K5W74gc4uxSAZLpHbKi6C8SVu8uZKbq23WG6fN3bObtfArvj2pY7ntAuO7iPRrmw7pM5s0sVOruOdzuG4bW60jXEOmvYSztFuCq7tQb8ue4xBrutmUe6RJauul5TJzuY6vU4Tot+OqHdhLoZa5y5pSF8Ora3gDq/Qj27kA1JuyVUAbv0ZoA6nfU9u3udDztFxQ26RSMpuyUcKDtiaoA6ARbKOmxwILvWIOa6u52YuuwVkzsvcpo5Im1EOwt/RrgwHmE7162dux8Kh7vi+NO630SAOnCIZDoWZZO7v1aAuqDkFrvRVCq5oyVLu301wjpYfts52iPKus9xnrrZNXO6U71wuohXDLrcyQ+7UMRXOxKqRDkEVb062ta7e6G8S7ejgrTW8P3ZpEx84eX92fxbSKxc1kK/cR2WLpg46uTwj2imZ1qkQQDwvuHXvLzUGQWCddvENk7izHx8Bmhh9/jKn2AlRKIlNmEIDh/F4zjLZq6nLOT2ELJ0jLnc7rLVulI335bZBs07D9xb1MGUoClESVUqQWbctfKXkuJKaZ2coH00e4QDt5PfE2mipwvL61QiF5WI80x7jN9e1kn8dOp7qGYAqx6UjDL+L9oK+8dfHt70ptNCI2Aigjhrf6xX+la9+wLckY8PkL/pmrux+dqQ74FkMqTFVCj9wKeqGKMB1qAEtDKUw8JVrl4SYFjs8UlvV3wVHdA9G5LlxquJyIMqzThdY/sguKt+ywzXuP4hKVaePnRwe5ADYliv6yEzF+9rdFRolQ4UFdkh7JMgD7x3rfvrH3h8ItrU0cf2Bd/ncVU82epK7gAkEO24Mf11qKxxlcvpE+3F6MCN4MZtyDnCBROuUAOvdROdLkWbpO1JF4QVApcEx4HFVmKMwyvFhzHZNoHc5fbwhCY2IcolauKpgORChKzESwQn2MhTn1CEeYcGV279SfMlfxXvpYDSUAG4koZmWNFqf6sz0kuDV8UMXg=="
    r2 := "kQgDaovQX425hSL6Qld48oiwHZhg1epscDDYszJ67aI/8A3Kwm1ZGfJ7FTbSjSlbP0fzoB7fDY4Q5UNCYDHknyPya+VhxABVQRaLFKO1b+P9ZIUcRZKrVXnumNkgfXpDceYq0qwrKO1BtALla3LJaddQhR3iMnJcIQs3QomyhvuZsc5G3Pc0Hqw3BBipzoKBHwmeAzsSYF0el5+nSiek5NhzK7ZsYNQZl9kyQam1w8m+Y8z5dS5Xk8UQK+q95KnfPLTc073M/Yk8eE9/PPRPuj0XfaY8kQvavfeIZr3f+La9S2KkvYchDD3xQcq9GEZ3PTw14b17r808AQcbvTqpNLrqUkO9HgMzvc75QL1b+C49O6lLvUawFLyxxvk8XX0qPXu/A71+p9o9cl/APCuXlz2g3q28cSgdPjAlfTykxkm8xbgcvO2IUL0oGXM9lNYjO4jMBTwNMcw9deIhPTi7Fbzz5AW+q5Mhvngq2D3xhw2+GRImPNEvET0TLGi94s2tPFlELD7OEGW8h4HavGvATTyDq4y8PLxGvang7DxyA7k6omeAPEnz6DwvmGS8murNPe8pST2gdbC8i9RRPQDA47yMOjg+tkZ0vWGW4z1FVCc9i41aPbTqXT6Duku9tt2IPTDXgjz6jC2+B04bPhS6Xz75UjQ9X1WAPe93Rb2H4+69nMEMPfO5Or5svfk8EjGuO+KTir0jOVs9PKYCve2U771M8dU9KhpPvQWk0ruDnj49LU1GPvD4/T0xmag9y38dviNQdjwzFV4+Gs4gvA9CHz3Q+pQ9M2e5vEEpLT37dpY9Ntn4vIexp7yOeSg9ydHeu5wUzTztXIS8UT+MPYCYQrqj7Dk9YUrBvDjoKbuuQku9r3OOPd9dOLs+8Wi9ZaIMvfCzgr20BaA9eyVJvcaCAT1hU+Q72Hk0PbQgkr1GjOk8T9QsOxd+ZL3vT9O8CPzFOTDKxrzxJrS8rz3qvCEQyDzo5tE6AMAQOkxWLj05O4O8vDYHvVXeYb1HiFO9ClvLOxzTtT173z69LUovPWQan7yJU5a8qdoFPW/xjz3dSOS7mYpiPRjOqL3jors7OiVxvM/jPz3ngKs8zMR6OaxsIztkSHY8lEUjvIDYqr0dGii8jWkRPe4dkry8d7A8zEDpO4s4kb0CTEa7Zjf0PAiSRTuhCY68ZUQlveuDeTriGC08xZFbvShZKb0huqi9gSVTvM3G0jz66CW8p3UevP+Rcz1fV6293Wh5PCKySj1qB2E8d6LnvJWygT2n9oi80eDVvGUY+jsJkwU8ugxHPSv4PTsW1im6ML2rvDY0Mz3lMqG9t/YKPTYaCb0iip87G8I3PO2RlzzNxfm7jgoTPVJZibx1HMe80V9dPWSnNz0/sfW8BhwUPXNnDb2wWiW8D6ZNPTZ6z7xZss+8vLsQvYYOqrwRgiI9IfmcO4C9Vry3KUE8/nsKvVqMVz25t6g7GNmEPLhEEj13Knw8iIcuu34pHL2vibo8ey1xuq0SZbyf46i89c8HPDX6jjyvhQi9T17HvNYWKb2RMfe7TBmjvOPId7oVPdI8z6bGupFeXT17gXq8I0o9vENzCLzOjlM9QMEQPavBLry7Gn+83U5XPGzKHzw8Iwa81BTiugTfBTrZRQ89BIE0vONE0bxEaV09lnirPB4jaD3TcWQ9w7iuvDQOmzxP7iC8cbhlPMsEMr2o52c7TweMPMEjljuGaoG72Hs3PIV/vTuRGD894OgMvRo9MLljBJk8ehzhPAUZ4bwAxWU9DUOSPJtrX7v46iQ7IScTPE9hFj38Iq+9VLISvN1O5bs7Fvc7+9qbvCdPg72PHPu8fioaPS/LojwaRiw86tZGPFelOjpAu6O766hdvfIDEzuEbQ08S1tsPN7XnTwzNFE8c9eJu2QJaDy3UmC8ToOKvKqKmjxDCb66QkcDO7IEKjxHMso8D0ogvVGYvDwnjSc7RFYfPWT3WTsJ+ja8ZW62u7wn3bzBW/E5RU8DPX9c/DxJmIE8XrRMO0LEwrw3dRG6z8VDvfBUsrzjBVi8o0fPum3l/LxhEBQ6Ru4QPPXuNDwqW9A8F426PIfhojnXDp87k/9VvAGidLtYRJ882Nw2vDwJFbsLcOG7jE+gvDCW4Ds7ww28U2ezO1YLujwBkQk7oen3ukIKlTqB3QW8JVZUPAhmozyCe387ThxpOhTY8LzwhQ68v5fROrv+A7xl7TM7XDtyuzxpoTuk78i8fSH7u/nLJryyeOy6ePdsu/qBVrojmgg64LkkuwV7FzzQkdo6CPdIvFnH27uhs5w698W3PI2+q7sY2Qk87hCiOTZzbrzTxCM7lMGuu87ASLuZyHi6A143u8sReryJSYE7MbyAvFHND7t2FYo7ELnwOooAZbuEagI8eZWruzqqOLxCPhE8gulRvOhzWDyoPEK7FfMPvDsVM7vYUgS87HwAu1k0/Lu2H2o8nlzLuSBZLjtuXU+7oY65OQaMf7wYB727zgn6OkPBXTrT4pE7+GHnu6ry+7qhJww75iJbO4TkBLkZTTE7EzQVOvfvKTzC9jE7JOD7OvwSqbm4M7a7WaYmO9q8CDnijJy7Z+56u1aYrTtuhd07AWIcu1/nYbrXWOk6X89YOdY/Fru4/7u6H26qu9mSlrpoFGA7HrHKOovI2jtJXkq745SxOtNIqrqjzYQ7rEhaOxVXxjvWV3e7CLyruO/nNzqlgoy7/6ZYu3gryLv+g0y6NDRZu4Y9w7lbOaI5Yu9TOzV2Pbs+aOa600yJu9Wd07sLNqW7UJo8OZK31rpVL/A7JTbrOix5pLvVXuM5h1t0u/wvTjt8PVu7MkYROs8aCbs1TBY7OXl5Omtr3TtexQu7qkgyO891iLsrhau5/alwuzUDC7q5DwA67kL9u1Eko7vbp6O6SDdYO7E7LLpemMo6Do8HO4dc57kvq125SUwlus61NrtaM4K65aRtOqoG7jqlWa86tH9oO97XfXdFHRFCjN2UVATTeF7IAklw9rDpJZq+fRVA964f0C2WFkqnWdaG7SyLwqXpi6gz/J/j5sV/pkOU5jxEBg5xnSW7Rn6TzG3AWDBmQrwPdrqvW6F12km5bzD1szcEJtQp4RuodugWN0FHnoQFrfq/Xldi1DKrjqLchFYUiXzps18FXNbtcw4wuqy0wFuwgLoI4o86jh7da6M1gC2yauESbz7pXrL4jm6mQy8C86+8/JJNOCJrFo0PSw49/XgfEehe+kcR89Z/mxuvnRBfWw3yqEUVFVujJaeyY6UsgrYV4bJd86c1dENQJOFghD5ud+ezjfwQMSO444ZeEQoWJ+zJhOBxula1C3qXbP7V2ne+jwW7oDbfWRtmuCxxz1Nemdg/DJOVwp8RWw0RMueI8HiNrRrEjXTf9C0NZv1hxJg7BaTOm2hvrA=="
 
    rb1,_ := base64.StdEncoding.DecodeString(r1)
    rb2,_ := base64.StdEncoding.DecodeString(r2)
 
    sourceB,_ := base64.StdEncoding.DecodeString(fea1)
    targetB,_ := base64.StdEncoding.DecodeString(fea3)
    t1,_ :=base64.StdEncoding.DecodeString(fea4)
    sec := gosdk.FaceCompare(sourceB, targetB)
    sec1 :=gosdk.FaceCompare(sourceB, t1)
    sec2 :=gosdk.FaceCompare(t1,targetB)
 
    rsec :=gosdk.FaceCompare(rb1,rb2)
 
    fmt.Println("比对分值:",sec)
    fmt.Println("与学鹏强比:",sec1)
    fmt.Println("学鹏强比白ban:",sec2)
    fmt.Println("rb1 vs rb2:",rsec)
}