// Protocol Buffers - Google's data interchange format
|
// Copyright 2008 Google Inc. All rights reserved.
|
// https://developers.google.com/protocol-buffers/
|
//
|
// Redistribution and use in source and binary forms, with or without
|
// modification, are permitted provided that the following conditions are
|
// met:
|
//
|
// * Redistributions of source code must retain the above copyright
|
// notice, this list of conditions and the following disclaimer.
|
// * Redistributions in binary form must reproduce the above
|
// copyright notice, this list of conditions and the following disclaimer
|
// in the documentation and/or other materials provided with the
|
// distribution.
|
// * Neither the name of Google Inc. nor the names of its
|
// contributors may be used to endorse or promote products derived from
|
// this software without specific prior written permission.
|
//
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// Author: kenton@google.com (Kenton Varda)
|
// atenasio@google.com (Chris Atenasio) (ZigZag transform)
|
// wink@google.com (Wink Saville) (refactored from wire_format.h)
|
// Based on original Protocol Buffers design by
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
//
|
// This header is logically internal, but is made public because it is used
|
// from protocol-compiler-generated code, which may reside in other components.
|
|
#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|
#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|
|
#include <string>
|
#include <google/protobuf/stubs/common.h>
|
#include <google/protobuf/repeated_field.h>
|
#include <google/protobuf/message_lite.h>
|
#include <google/protobuf/io/coded_stream.h> // for CodedOutputStream::Varint32Size
|
|
// Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL.
|
//
|
// If some one needs the macro TYPE_BOOL in a file that includes this header, it's
|
// possible to bring it back using push/pop_macro as follows.
|
//
|
// #pragma push_macro("TYPE_BOOL")
|
// #include this header and/or all headers that need the macro to be undefined.
|
// #pragma pop_macro("TYPE_BOOL")
|
#undef TYPE_BOOL
|
|
namespace google {
|
|
namespace protobuf {
|
template <typename T> class RepeatedField; // repeated_field.h
|
}
|
|
namespace protobuf {
|
namespace internal {
|
|
class StringPieceField;
|
|
// This class is for internal use by the protocol buffer library and by
|
// protocol-complier-generated message classes. It must not be called
|
// directly by clients.
|
//
|
// This class contains helpers for implementing the binary protocol buffer
|
// wire format without the need for reflection. Use WireFormat when using
|
// reflection.
|
//
|
// This class is really a namespace that contains only static methods.
|
class LIBPROTOBUF_EXPORT WireFormatLite {
|
public:
|
|
// -----------------------------------------------------------------
|
// Helper constants and functions related to the format. These are
|
// mostly meant for internal and generated code to use.
|
|
// The wire format is composed of a sequence of tag/value pairs, each
|
// of which contains the value of one field (or one element of a repeated
|
// field). Each tag is encoded as a varint. The lower bits of the tag
|
// identify its wire type, which specifies the format of the data to follow.
|
// The rest of the bits contain the field number. Each type of field (as
|
// declared by FieldDescriptor::Type, in descriptor.h) maps to one of
|
// these wire types. Immediately following each tag is the field's value,
|
// encoded in the format specified by the wire type. Because the tag
|
// identifies the encoding of this data, it is possible to skip
|
// unrecognized fields for forwards compatibility.
|
|
enum WireType {
|
WIRETYPE_VARINT = 0,
|
WIRETYPE_FIXED64 = 1,
|
WIRETYPE_LENGTH_DELIMITED = 2,
|
WIRETYPE_START_GROUP = 3,
|
WIRETYPE_END_GROUP = 4,
|
WIRETYPE_FIXED32 = 5,
|
};
|
|
// Lite alternative to FieldDescriptor::Type. Must be kept in sync.
|
enum FieldType {
|
TYPE_DOUBLE = 1,
|
TYPE_FLOAT = 2,
|
TYPE_INT64 = 3,
|
TYPE_UINT64 = 4,
|
TYPE_INT32 = 5,
|
TYPE_FIXED64 = 6,
|
TYPE_FIXED32 = 7,
|
TYPE_BOOL = 8,
|
TYPE_STRING = 9,
|
TYPE_GROUP = 10,
|
TYPE_MESSAGE = 11,
|
TYPE_BYTES = 12,
|
TYPE_UINT32 = 13,
|
TYPE_ENUM = 14,
|
TYPE_SFIXED32 = 15,
|
TYPE_SFIXED64 = 16,
|
TYPE_SINT32 = 17,
|
TYPE_SINT64 = 18,
|
MAX_FIELD_TYPE = 18,
|
};
|
|
// Lite alternative to FieldDescriptor::CppType. Must be kept in sync.
|
enum CppType {
|
CPPTYPE_INT32 = 1,
|
CPPTYPE_INT64 = 2,
|
CPPTYPE_UINT32 = 3,
|
CPPTYPE_UINT64 = 4,
|
CPPTYPE_DOUBLE = 5,
|
CPPTYPE_FLOAT = 6,
|
CPPTYPE_BOOL = 7,
|
CPPTYPE_ENUM = 8,
|
CPPTYPE_STRING = 9,
|
CPPTYPE_MESSAGE = 10,
|
MAX_CPPTYPE = 10,
|
};
|
|
// Helper method to get the CppType for a particular Type.
|
static CppType FieldTypeToCppType(FieldType type);
|
|
// Given a FieldSescriptor::Type return its WireType
|
static inline WireFormatLite::WireType WireTypeForFieldType(
|
WireFormatLite::FieldType type) {
|
return kWireTypeForFieldType[type];
|
}
|
|
// Number of bits in a tag which identify the wire type.
|
static const int kTagTypeBits = 3;
|
// Mask for those bits.
|
static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;
|
|
// Helper functions for encoding and decoding tags. (Inlined below and in
|
// _inl.h)
|
//
|
// This is different from MakeTag(field->number(), field->type()) in the case
|
// of packed repeated fields.
|
static uint32 MakeTag(int field_number, WireType type);
|
static WireType GetTagWireType(uint32 tag);
|
static int GetTagFieldNumber(uint32 tag);
|
|
// Compute the byte size of a tag. For groups, this includes both the start
|
// and end tags.
|
static inline size_t TagSize(int field_number,
|
WireFormatLite::FieldType type);
|
|
// Skips a field value with the given tag. The input should start
|
// positioned immediately after the tag. Skipped values are simply discarded,
|
// not recorded anywhere. See WireFormat::SkipField() for a version that
|
// records to an UnknownFieldSet.
|
static bool SkipField(io::CodedInputStream* input, uint32 tag);
|
|
// Skips a field value with the given tag. The input should start
|
// positioned immediately after the tag. Skipped values are recorded to a
|
// CodedOutputStream.
|
static bool SkipField(io::CodedInputStream* input, uint32 tag,
|
io::CodedOutputStream* output);
|
|
// Reads and ignores a message from the input. Skipped values are simply
|
// discarded, not recorded anywhere. See WireFormat::SkipMessage() for a
|
// version that records to an UnknownFieldSet.
|
static bool SkipMessage(io::CodedInputStream* input);
|
|
// Reads and ignores a message from the input. Skipped values are recorded
|
// to a CodedOutputStream.
|
static bool SkipMessage(io::CodedInputStream* input,
|
io::CodedOutputStream* output);
|
|
// This macro does the same thing as WireFormatLite::MakeTag(), but the
|
// result is usable as a compile-time constant, which makes it usable
|
// as a switch case or a template input. WireFormatLite::MakeTag() is more
|
// type-safe, though, so prefer it if possible.
|
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
|
static_cast<uint32>( \
|
((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \
|
| (TYPE))
|
|
// These are the tags for the old MessageSet format, which was defined as:
|
// message MessageSet {
|
// repeated group Item = 1 {
|
// required int32 type_id = 2;
|
// required string message = 3;
|
// }
|
// }
|
static const int kMessageSetItemNumber = 1;
|
static const int kMessageSetTypeIdNumber = 2;
|
static const int kMessageSetMessageNumber = 3;
|
static const int kMessageSetItemStartTag =
|
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
|
WireFormatLite::WIRETYPE_START_GROUP);
|
static const int kMessageSetItemEndTag =
|
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
|
WireFormatLite::WIRETYPE_END_GROUP);
|
static const int kMessageSetTypeIdTag =
|
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber,
|
WireFormatLite::WIRETYPE_VARINT);
|
static const int kMessageSetMessageTag =
|
GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber,
|
WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
|
|
// Byte size of all tags of a MessageSet::Item combined.
|
static const size_t kMessageSetItemTagsSize;
|
|
// Helper functions for converting between floats/doubles and IEEE-754
|
// uint32s/uint64s so that they can be written. (Assumes your platform
|
// uses IEEE-754 floats.)
|
static uint32 EncodeFloat(float value);
|
static float DecodeFloat(uint32 value);
|
static uint64 EncodeDouble(double value);
|
static double DecodeDouble(uint64 value);
|
|
// Helper functions for mapping signed integers to unsigned integers in
|
// such a way that numbers with small magnitudes will encode to smaller
|
// varints. If you simply static_cast a negative number to an unsigned
|
// number and varint-encode it, it will always take 10 bytes, defeating
|
// the purpose of varint. So, for the "sint32" and "sint64" field types,
|
// we ZigZag-encode the values.
|
static uint32 ZigZagEncode32(int32 n);
|
static int32 ZigZagDecode32(uint32 n);
|
static uint64 ZigZagEncode64(int64 n);
|
static int64 ZigZagDecode64(uint64 n);
|
|
// =================================================================
|
// Methods for reading/writing individual field. The implementations
|
// of these methods are defined in wire_format_lite_inl.h; you must #include
|
// that file to use these.
|
|
// Avoid ugly line wrapping
|
#define input io::CodedInputStream* input_arg
|
#define output io::CodedOutputStream* output_arg
|
#define field_number int field_number_arg
|
#ifdef NDEBUG
|
#define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE
|
#else
|
// Avoid excessive inlining in non-optimized builds. Without other optimizations
|
// the inlining is not going to provide benefits anyway and the huge resulting
|
// functions, especially in the proto-generated serialization functions, produce
|
// stack frames so large that many tests run into stack overflows (b/32192897).
|
#define INL
|
#endif
|
|
// Read fields, not including tags. The assumption is that you already
|
// read the tag to determine what field to read.
|
|
// For primitive fields, we just use a templatized routine parameterized by
|
// the represented type and the FieldType. These are specialized with the
|
// appropriate definition for each declared type.
|
template <typename CType, enum FieldType DeclaredType> INL
|
static bool ReadPrimitive(input, CType* value);
|
|
// Reads repeated primitive values, with optimizations for repeats.
|
// tag_size and tag should both be compile-time constants provided by the
|
// protocol compiler.
|
template <typename CType, enum FieldType DeclaredType> INL
|
static bool ReadRepeatedPrimitive(int tag_size,
|
uint32 tag,
|
input,
|
RepeatedField<CType>* value);
|
|
// Identical to ReadRepeatedPrimitive, except will not inline the
|
// implementation.
|
template <typename CType, enum FieldType DeclaredType>
|
static bool ReadRepeatedPrimitiveNoInline(int tag_size,
|
uint32 tag,
|
input,
|
RepeatedField<CType>* value);
|
|
// Reads a primitive value directly from the provided buffer. It returns a
|
// pointer past the segment of data that was read.
|
//
|
// This is only implemented for the types with fixed wire size, e.g.
|
// float, double, and the (s)fixed* types.
|
template <typename CType, enum FieldType DeclaredType> INL
|
static const uint8* ReadPrimitiveFromArray(const uint8* buffer, CType* value);
|
|
// Reads a primitive packed field.
|
//
|
// This is only implemented for packable types.
|
template <typename CType, enum FieldType DeclaredType> INL
|
static bool ReadPackedPrimitive(input, RepeatedField<CType>* value);
|
|
// Identical to ReadPackedPrimitive, except will not inline the
|
// implementation.
|
template <typename CType, enum FieldType DeclaredType>
|
static bool ReadPackedPrimitiveNoInline(input, RepeatedField<CType>* value);
|
|
// Read a packed enum field. If the is_valid function is not NULL, values for
|
// which is_valid(value) returns false are silently dropped.
|
static bool ReadPackedEnumNoInline(input,
|
bool (*is_valid)(int),
|
RepeatedField<int>* values);
|
|
// Read a packed enum field. If the is_valid function is not NULL, values for
|
// which is_valid(value) returns false are appended to unknown_fields_stream.
|
static bool ReadPackedEnumPreserveUnknowns(
|
input,
|
field_number,
|
bool (*is_valid)(int),
|
io::CodedOutputStream* unknown_fields_stream,
|
RepeatedField<int>* values);
|
|
// Read a string. ReadString(..., string* value) requires an existing string.
|
static inline bool ReadString(input, string* value);
|
// ReadString(..., string** p) is internal-only, and should only be called
|
// from generated code. It starts by setting *p to "new string"
|
// if *p == &GetEmptyStringAlreadyInited(). It then invokes
|
// ReadString(input, *p). This is useful for reducing code size.
|
static inline bool ReadString(input, string** p);
|
// Analogous to ReadString().
|
static bool ReadBytes(input, string* value);
|
static bool ReadBytes(input, string** p);
|
|
|
enum Operation {
|
PARSE = 0,
|
SERIALIZE = 1,
|
};
|
|
// Returns true if the data is valid UTF-8.
|
static bool VerifyUtf8String(const char* data, int size,
|
Operation op,
|
const char* field_name);
|
|
static inline bool ReadGroup (field_number, input, MessageLite* value);
|
static inline bool ReadMessage(input, MessageLite* value);
|
|
// Like above, but de-virtualize the call to MergePartialFromCodedStream().
|
// The pointer must point at an instance of MessageType, *not* a subclass (or
|
// the subclass must not override MergePartialFromCodedStream()).
|
template<typename MessageType>
|
static inline bool ReadGroupNoVirtual(field_number, input,
|
MessageType* value);
|
template<typename MessageType>
|
static inline bool ReadMessageNoVirtual(input, MessageType* value);
|
|
// The same, but do not modify input's recursion depth. This is useful
|
// when reading a bunch of groups or messages in a loop, because then the
|
// recursion depth can be incremented before the loop and decremented after.
|
template<typename MessageType>
|
static inline bool ReadGroupNoVirtualNoRecursionDepth(field_number, input,
|
MessageType* value);
|
|
template<typename MessageType>
|
static inline bool ReadMessageNoVirtualNoRecursionDepth(input,
|
MessageType* value);
|
|
// Write a tag. The Write*() functions typically include the tag, so
|
// normally there's no need to call this unless using the Write*NoTag()
|
// variants.
|
INL static void WriteTag(field_number, WireType type, output);
|
|
// Write fields, without tags.
|
INL static void WriteInt32NoTag (int32 value, output);
|
INL static void WriteInt64NoTag (int64 value, output);
|
INL static void WriteUInt32NoTag (uint32 value, output);
|
INL static void WriteUInt64NoTag (uint64 value, output);
|
INL static void WriteSInt32NoTag (int32 value, output);
|
INL static void WriteSInt64NoTag (int64 value, output);
|
INL static void WriteFixed32NoTag (uint32 value, output);
|
INL static void WriteFixed64NoTag (uint64 value, output);
|
INL static void WriteSFixed32NoTag(int32 value, output);
|
INL static void WriteSFixed64NoTag(int64 value, output);
|
INL static void WriteFloatNoTag (float value, output);
|
INL static void WriteDoubleNoTag (double value, output);
|
INL static void WriteBoolNoTag (bool value, output);
|
INL static void WriteEnumNoTag (int value, output);
|
|
// Write array of primitive fields, without tags
|
static void WriteFloatArray (const float* a, int n, output);
|
static void WriteDoubleArray (const double* a, int n, output);
|
static void WriteFixed32Array (const uint32* a, int n, output);
|
static void WriteFixed64Array (const uint64* a, int n, output);
|
static void WriteSFixed32Array(const int32* a, int n, output);
|
static void WriteSFixed64Array(const int64* a, int n, output);
|
static void WriteBoolArray (const bool* a, int n, output);
|
|
// Write fields, including tags.
|
static void WriteInt32 (field_number, int32 value, output);
|
static void WriteInt64 (field_number, int64 value, output);
|
static void WriteUInt32 (field_number, uint32 value, output);
|
static void WriteUInt64 (field_number, uint64 value, output);
|
static void WriteSInt32 (field_number, int32 value, output);
|
static void WriteSInt64 (field_number, int64 value, output);
|
static void WriteFixed32 (field_number, uint32 value, output);
|
static void WriteFixed64 (field_number, uint64 value, output);
|
static void WriteSFixed32(field_number, int32 value, output);
|
static void WriteSFixed64(field_number, int64 value, output);
|
static void WriteFloat (field_number, float value, output);
|
static void WriteDouble (field_number, double value, output);
|
static void WriteBool (field_number, bool value, output);
|
static void WriteEnum (field_number, int value, output);
|
|
static void WriteString(field_number, const string& value, output);
|
static void WriteBytes (field_number, const string& value, output);
|
static void WriteStringMaybeAliased(
|
field_number, const string& value, output);
|
static void WriteBytesMaybeAliased(
|
field_number, const string& value, output);
|
|
static void WriteGroup(
|
field_number, const MessageLite& value, output);
|
static void WriteMessage(
|
field_number, const MessageLite& value, output);
|
// Like above, but these will check if the output stream has enough
|
// space to write directly to a flat array.
|
static void WriteGroupMaybeToArray(
|
field_number, const MessageLite& value, output);
|
static void WriteMessageMaybeToArray(
|
field_number, const MessageLite& value, output);
|
|
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
// the subclass must not override SerializeWithCachedSizes()).
|
template<typename MessageType>
|
static inline void WriteGroupNoVirtual(
|
field_number, const MessageType& value, output);
|
template<typename MessageType>
|
static inline void WriteMessageNoVirtual(
|
field_number, const MessageType& value, output);
|
|
#undef output
|
#define output uint8* target
|
|
// Like above, but use only *ToArray methods of CodedOutputStream.
|
INL static uint8* WriteTagToArray(field_number, WireType type, output);
|
|
// Write fields, without tags.
|
INL static uint8* WriteInt32NoTagToArray (int32 value, output);
|
INL static uint8* WriteInt64NoTagToArray (int64 value, output);
|
INL static uint8* WriteUInt32NoTagToArray (uint32 value, output);
|
INL static uint8* WriteUInt64NoTagToArray (uint64 value, output);
|
INL static uint8* WriteSInt32NoTagToArray (int32 value, output);
|
INL static uint8* WriteSInt64NoTagToArray (int64 value, output);
|
INL static uint8* WriteFixed32NoTagToArray (uint32 value, output);
|
INL static uint8* WriteFixed64NoTagToArray (uint64 value, output);
|
INL static uint8* WriteSFixed32NoTagToArray(int32 value, output);
|
INL static uint8* WriteSFixed64NoTagToArray(int64 value, output);
|
INL static uint8* WriteFloatNoTagToArray (float value, output);
|
INL static uint8* WriteDoubleNoTagToArray (double value, output);
|
INL static uint8* WriteBoolNoTagToArray (bool value, output);
|
INL static uint8* WriteEnumNoTagToArray (int value, output);
|
|
// Write fields, including tags.
|
INL static uint8* WriteInt32ToArray(field_number, int32 value, output);
|
INL static uint8* WriteInt64ToArray(field_number, int64 value, output);
|
INL static uint8* WriteUInt32ToArray(field_number, uint32 value, output);
|
INL static uint8* WriteUInt64ToArray(field_number, uint64 value, output);
|
INL static uint8* WriteSInt32ToArray(field_number, int32 value, output);
|
INL static uint8* WriteSInt64ToArray(field_number, int64 value, output);
|
INL static uint8* WriteFixed32ToArray(field_number, uint32 value, output);
|
INL static uint8* WriteFixed64ToArray(field_number, uint64 value, output);
|
INL static uint8* WriteSFixed32ToArray(field_number, int32 value, output);
|
INL static uint8* WriteSFixed64ToArray(field_number, int64 value, output);
|
INL static uint8* WriteFloatToArray(field_number, float value, output);
|
INL static uint8* WriteDoubleToArray(field_number, double value, output);
|
INL static uint8* WriteBoolToArray(field_number, bool value, output);
|
INL static uint8* WriteEnumToArray(field_number, int value, output);
|
|
INL static uint8* WriteStringToArray(
|
field_number, const string& value, output);
|
INL static uint8* WriteBytesToArray(
|
field_number, const string& value, output);
|
|
// Whether to serialize deterministically (e.g., map keys are
|
// sorted) is a property of a CodedOutputStream, and in the process
|
// of serialization, the "ToArray" variants may be invoked. But they don't
|
// have a CodedOutputStream available, so they get an additional parameter
|
// telling them whether to serialize deterministically.
|
INL static uint8* InternalWriteGroupToArray(
|
field_number, const MessageLite& value, bool deterministic, output);
|
INL static uint8* InternalWriteMessageToArray(
|
field_number, const MessageLite& value, bool deterministic, output);
|
|
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
// the subclass must not override SerializeWithCachedSizes()).
|
template<typename MessageType>
|
INL static uint8* InternalWriteGroupNoVirtualToArray(
|
field_number, const MessageType& value, bool deterministic, output);
|
template<typename MessageType>
|
INL static uint8* InternalWriteMessageNoVirtualToArray(
|
field_number, const MessageType& value, bool deterministic, output);
|
|
// For backward-compatibility, the last four methods also have versions
|
// that are non-deterministic always.
|
INL static uint8* WriteGroupToArray(
|
field_number, const MessageLite& value, output) {
|
return InternalWriteGroupToArray(field_number_arg, value, false, target);
|
}
|
INL static uint8* WriteMessageToArray(
|
field_number, const MessageLite& value, output) {
|
return InternalWriteMessageToArray(field_number_arg, value, false, target);
|
}
|
template<typename MessageType>
|
INL static uint8* WriteGroupNoVirtualToArray(
|
field_number, const MessageType& value, output) {
|
return InternalWriteGroupNoVirtualToArray(field_number_arg, value, false,
|
target);
|
}
|
template<typename MessageType>
|
INL static uint8* WriteMessageNoVirtualToArray(
|
field_number, const MessageType& value, output) {
|
return InternalWriteMessageNoVirtualToArray(field_number_arg, value, false,
|
target);
|
}
|
|
#undef output
|
#undef input
|
#undef INL
|
|
#undef field_number
|
|
// Compute the byte size of a field. The XxSize() functions do NOT include
|
// the tag, so you must also call TagSize(). (This is because, for repeated
|
// fields, you should only call TagSize() once and multiply it by the element
|
// count, but you may have to call XxSize() for each individual element.)
|
static inline size_t Int32Size ( int32 value);
|
static inline size_t Int64Size ( int64 value);
|
static inline size_t UInt32Size (uint32 value);
|
static inline size_t UInt64Size (uint64 value);
|
static inline size_t SInt32Size ( int32 value);
|
static inline size_t SInt64Size ( int64 value);
|
static inline size_t EnumSize ( int value);
|
|
static size_t Int32Size (const RepeatedField< int32>& value);
|
static inline size_t Int64Size (const RepeatedField< int64>& value);
|
static size_t UInt32Size(const RepeatedField<uint32>& value);
|
static inline size_t UInt64Size(const RepeatedField<uint64>& value);
|
static size_t SInt32Size(const RepeatedField< int32>& value);
|
static inline size_t SInt64Size(const RepeatedField< int64>& value);
|
static size_t EnumSize (const RepeatedField< int>& value);
|
|
// These types always have the same size.
|
static const size_t kFixed32Size = 4;
|
static const size_t kFixed64Size = 8;
|
static const size_t kSFixed32Size = 4;
|
static const size_t kSFixed64Size = 8;
|
static const size_t kFloatSize = 4;
|
static const size_t kDoubleSize = 8;
|
static const size_t kBoolSize = 1;
|
|
static inline size_t StringSize(const string& value);
|
static inline size_t BytesSize (const string& value);
|
|
static inline size_t GroupSize (const MessageLite& value);
|
static inline size_t MessageSize(const MessageLite& value);
|
|
// Like above, but de-virtualize the call to ByteSize(). The
|
// pointer must point at an instance of MessageType, *not* a subclass (or
|
// the subclass must not override ByteSize()).
|
template<typename MessageType>
|
static inline size_t GroupSizeNoVirtual (const MessageType& value);
|
template<typename MessageType>
|
static inline size_t MessageSizeNoVirtual(const MessageType& value);
|
|
// Given the length of data, calculate the byte size of the data on the
|
// wire if we encode the data as a length delimited field.
|
static inline size_t LengthDelimitedSize(size_t length);
|
|
private:
|
// A helper method for the repeated primitive reader. This method has
|
// optimizations for primitive types that have fixed size on the wire, and
|
// can be read using potentially faster paths.
|
template <typename CType, enum FieldType DeclaredType> GOOGLE_ATTRIBUTE_ALWAYS_INLINE
|
static bool ReadRepeatedFixedSizePrimitive(
|
int tag_size,
|
uint32 tag,
|
google::protobuf::io::CodedInputStream* input,
|
RepeatedField<CType>* value);
|
|
// Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
|
template <typename CType, enum FieldType DeclaredType> GOOGLE_ATTRIBUTE_ALWAYS_INLINE
|
static bool ReadPackedFixedSizePrimitive(google::protobuf::io::CodedInputStream* input,
|
RepeatedField<CType>* value);
|
|
static const CppType kFieldTypeToCppTypeMap[];
|
static const WireFormatLite::WireType kWireTypeForFieldType[];
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
|
};
|
|
// A class which deals with unknown values. The default implementation just
|
// discards them. WireFormat defines a subclass which writes to an
|
// UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since
|
// ExtensionSet is part of the lite library but UnknownFieldSet is not.
|
class LIBPROTOBUF_EXPORT FieldSkipper {
|
public:
|
FieldSkipper() {}
|
virtual ~FieldSkipper() {}
|
|
// Skip a field whose tag has already been consumed.
|
virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
|
|
// Skip an entire message or group, up to an end-group tag (which is consumed)
|
// or end-of-stream.
|
virtual bool SkipMessage(io::CodedInputStream* input);
|
|
// Deal with an already-parsed unrecognized enum value. The default
|
// implementation does nothing, but the UnknownFieldSet-based implementation
|
// saves it as an unknown varint.
|
virtual void SkipUnknownEnum(int field_number, int value);
|
};
|
|
// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
|
|
class LIBPROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
|
public:
|
explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
|
: unknown_fields_(unknown_fields) {}
|
virtual ~CodedOutputStreamFieldSkipper() {}
|
|
// implements FieldSkipper -----------------------------------------
|
virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
|
virtual bool SkipMessage(io::CodedInputStream* input);
|
virtual void SkipUnknownEnum(int field_number, int value);
|
|
protected:
|
io::CodedOutputStream* unknown_fields_;
|
};
|
|
|
// inline methods ====================================================
|
|
inline WireFormatLite::CppType
|
WireFormatLite::FieldTypeToCppType(FieldType type) {
|
return kFieldTypeToCppTypeMap[type];
|
}
|
|
inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) {
|
return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
|
}
|
|
inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
|
return static_cast<WireType>(tag & kTagTypeMask);
|
}
|
|
inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
|
return static_cast<int>(tag >> kTagTypeBits);
|
}
|
|
inline size_t WireFormatLite::TagSize(int field_number,
|
WireFormatLite::FieldType type) {
|
size_t result = io::CodedOutputStream::VarintSize32(
|
field_number << kTagTypeBits);
|
if (type == TYPE_GROUP) {
|
// Groups have both a start and an end tag.
|
return result * 2;
|
} else {
|
return result;
|
}
|
}
|
|
inline uint32 WireFormatLite::EncodeFloat(float value) {
|
union {float f; uint32 i;};
|
f = value;
|
return i;
|
}
|
|
inline float WireFormatLite::DecodeFloat(uint32 value) {
|
union {float f; uint32 i;};
|
i = value;
|
return f;
|
}
|
|
inline uint64 WireFormatLite::EncodeDouble(double value) {
|
union {double f; uint64 i;};
|
f = value;
|
return i;
|
}
|
|
inline double WireFormatLite::DecodeDouble(uint64 value) {
|
union {double f; uint64 i;};
|
i = value;
|
return f;
|
}
|
|
// ZigZag Transform: Encodes signed integers so that they can be
|
// effectively used with varint encoding.
|
//
|
// varint operates on unsigned integers, encoding smaller numbers into
|
// fewer bytes. If you try to use it on a signed integer, it will treat
|
// this number as a very large unsigned integer, which means that even
|
// small signed numbers like -1 will take the maximum number of bytes
|
// (10) to encode. ZigZagEncode() maps signed integers to unsigned
|
// in such a way that those with a small absolute value will have smaller
|
// encoded values, making them appropriate for encoding using varint.
|
//
|
// int32 -> uint32
|
// -------------------------
|
// 0 -> 0
|
// -1 -> 1
|
// 1 -> 2
|
// -2 -> 3
|
// ... -> ...
|
// 2147483647 -> 4294967294
|
// -2147483648 -> 4294967295
|
//
|
// >> encode >>
|
// << decode <<
|
|
inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
|
// Note: the right-shift must be arithmetic
|
return (static_cast<uint32>(n) << 1) ^ (n >> 31);
|
}
|
|
inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
|
return (n >> 1) ^ -static_cast<int32>(n & 1);
|
}
|
|
inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
|
// Note: the right-shift must be arithmetic
|
return (static_cast<uint64>(n) << 1) ^ (n >> 63);
|
}
|
|
inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
|
return (n >> 1) ^ -static_cast<int64>(n & 1);
|
}
|
|
// String is for UTF-8 text only, but, even so, ReadString() can simply
|
// call ReadBytes().
|
|
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
|
string* value) {
|
return ReadBytes(input, value);
|
}
|
|
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
|
string** p) {
|
return ReadBytes(input, p);
|
}
|
|
} // namespace internal
|
} // namespace protobuf
|
|
} // namespace google
|
#endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
|