移动端的qt版本人脸流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
 
#ifndef OPENCV_HAL_INTRIN_NEON_HPP
#define OPENCV_HAL_INTRIN_NEON_HPP
 
#include <algorithm>
#include "opencv2/core/utility.hpp"
 
namespace cv
{
 
//! @cond IGNORED
 
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
 
#define CV_SIMD128 1
#if defined(__aarch64__)
#define CV_SIMD128_64F 1
#else
#define CV_SIMD128_64F 0
#endif
 
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_REINTERPRET(_Tpv, suffix) \
template <typename T> static inline \
_Tpv vreinterpretq_##suffix##_f64(T a) { return (_Tpv) a; } \
template <typename T> static inline \
float64x2_t vreinterpretq_f64_##suffix(T a) { return (float64x2_t) a; }
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint8x16_t, u8)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int8x16_t, s8)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint16x8_t, u16)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int16x8_t, s16)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint32x4_t, u32)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int32x4_t, s32)
OPENCV_HAL_IMPL_NEON_REINTERPRET(uint64x2_t, u64)
OPENCV_HAL_IMPL_NEON_REINTERPRET(int64x2_t, s64)
OPENCV_HAL_IMPL_NEON_REINTERPRET(float32x4_t, f32)
#endif
 
struct v_uint8x16
{
    typedef uchar lane_type;
    enum { nlanes = 16 };
 
    v_uint8x16() {}
    explicit v_uint8x16(uint8x16_t v) : val(v) {}
    v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7,
               uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15)
    {
        uchar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15};
        val = vld1q_u8(v);
    }
    uchar get0() const
    {
        return vgetq_lane_u8(val, 0);
    }
 
    uint8x16_t val;
};
 
struct v_int8x16
{
    typedef schar lane_type;
    enum { nlanes = 16 };
 
    v_int8x16() {}
    explicit v_int8x16(int8x16_t v) : val(v) {}
    v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7,
               schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15)
    {
        schar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15};
        val = vld1q_s8(v);
    }
    schar get0() const
    {
        return vgetq_lane_s8(val, 0);
    }
 
    int8x16_t val;
};
 
struct v_uint16x8
{
    typedef ushort lane_type;
    enum { nlanes = 8 };
 
    v_uint16x8() {}
    explicit v_uint16x8(uint16x8_t v) : val(v) {}
    v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7)
    {
        ushort v[] = {v0, v1, v2, v3, v4, v5, v6, v7};
        val = vld1q_u16(v);
    }
    ushort get0() const
    {
        return vgetq_lane_u16(val, 0);
    }
 
    uint16x8_t val;
};
 
struct v_int16x8
{
    typedef short lane_type;
    enum { nlanes = 8 };
 
    v_int16x8() {}
    explicit v_int16x8(int16x8_t v) : val(v) {}
    v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
    {
        short v[] = {v0, v1, v2, v3, v4, v5, v6, v7};
        val = vld1q_s16(v);
    }
    short get0() const
    {
        return vgetq_lane_s16(val, 0);
    }
 
    int16x8_t val;
};
 
struct v_uint32x4
{
    typedef unsigned lane_type;
    enum { nlanes = 4 };
 
    v_uint32x4() {}
    explicit v_uint32x4(uint32x4_t v) : val(v) {}
    v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3)
    {
        unsigned v[] = {v0, v1, v2, v3};
        val = vld1q_u32(v);
    }
    unsigned get0() const
    {
        return vgetq_lane_u32(val, 0);
    }
 
    uint32x4_t val;
};
 
struct v_int32x4
{
    typedef int lane_type;
    enum { nlanes = 4 };
 
    v_int32x4() {}
    explicit v_int32x4(int32x4_t v) : val(v) {}
    v_int32x4(int v0, int v1, int v2, int v3)
    {
        int v[] = {v0, v1, v2, v3};
        val = vld1q_s32(v);
    }
    int get0() const
    {
        return vgetq_lane_s32(val, 0);
    }
    int32x4_t val;
};
 
struct v_float32x4
{
    typedef float lane_type;
    enum { nlanes = 4 };
 
    v_float32x4() {}
    explicit v_float32x4(float32x4_t v) : val(v) {}
    v_float32x4(float v0, float v1, float v2, float v3)
    {
        float v[] = {v0, v1, v2, v3};
        val = vld1q_f32(v);
    }
    float get0() const
    {
        return vgetq_lane_f32(val, 0);
    }
    float32x4_t val;
};
 
struct v_uint64x2
{
    typedef uint64 lane_type;
    enum { nlanes = 2 };
 
    v_uint64x2() {}
    explicit v_uint64x2(uint64x2_t v) : val(v) {}
    v_uint64x2(unsigned v0, unsigned v1)
    {
        uint64 v[] = {v0, v1};
        val = vld1q_u64(v);
    }
    uint64 get0() const
    {
        return vgetq_lane_u64(val, 0);
    }
    uint64x2_t val;
};
 
struct v_int64x2
{
    typedef int64 lane_type;
    enum { nlanes = 2 };
 
    v_int64x2() {}
    explicit v_int64x2(int64x2_t v) : val(v) {}
    v_int64x2(int v0, int v1)
    {
        int64 v[] = {v0, v1};
        val = vld1q_s64(v);
    }
    int64 get0() const
    {
        return vgetq_lane_s64(val, 0);
    }
    int64x2_t val;
};
 
#if CV_SIMD128_64F
struct v_float64x2
{
    typedef double lane_type;
    enum { nlanes = 2 };
 
    v_float64x2() {}
    explicit v_float64x2(float64x2_t v) : val(v) {}
    v_float64x2(double v0, double v1)
    {
        double v[] = {v0, v1};
        val = vld1q_f64(v);
    }
    double get0() const
    {
        return vgetq_lane_f64(val, 0);
    }
    float64x2_t val;
};
#endif
 
#if CV_FP16
// Workaround for old compilers
template <typename T> static inline int16x4_t vreinterpret_s16_f16(T a)
{ return (int16x4_t)a; }
template <typename T> static inline float16x4_t vreinterpret_f16_s16(T a)
{ return (float16x4_t)a; }
template <typename T> static inline float16x4_t cv_vld1_f16(const T* ptr)
{
#ifndef vld1_f16 // APPLE compiler defines vld1_f16 as macro
    return vreinterpret_f16_s16(vld1_s16((const short*)ptr));
#else
    return vld1_f16((const __fp16*)ptr);
#endif
}
template <typename T> static inline void cv_vst1_f16(T* ptr, float16x4_t a)
{
#ifndef vst1_f16 // APPLE compiler defines vst1_f16 as macro
    vst1_s16((short*)ptr, vreinterpret_s16_f16(a));
#else
    vst1_f16((__fp16*)ptr, a);
#endif
}
 
struct v_float16x4
{
    typedef short lane_type;
    enum { nlanes = 4 };
 
    v_float16x4() {}
    explicit v_float16x4(float16x4_t v) : val(v) {}
    v_float16x4(short v0, short v1, short v2, short v3)
    {
        short v[] = {v0, v1, v2, v3};
        val = cv_vld1_f16(v);
    }
    short get0() const
    {
        return vget_lane_s16(vreinterpret_s16_f16(val), 0);
    }
    float16x4_t val;
};
#endif
 
#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \
inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \
inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \
inline _Tpv##_t vreinterpretq_##suffix##_##suffix(_Tpv##_t v) { return v; } \
inline v_uint8x16 v_reinterpret_as_u8(const v_##_Tpv& v) { return v_uint8x16(vreinterpretq_u8_##suffix(v.val)); } \
inline v_int8x16 v_reinterpret_as_s8(const v_##_Tpv& v) { return v_int8x16(vreinterpretq_s8_##suffix(v.val)); } \
inline v_uint16x8 v_reinterpret_as_u16(const v_##_Tpv& v) { return v_uint16x8(vreinterpretq_u16_##suffix(v.val)); } \
inline v_int16x8 v_reinterpret_as_s16(const v_##_Tpv& v) { return v_int16x8(vreinterpretq_s16_##suffix(v.val)); } \
inline v_uint32x4 v_reinterpret_as_u32(const v_##_Tpv& v) { return v_uint32x4(vreinterpretq_u32_##suffix(v.val)); } \
inline v_int32x4 v_reinterpret_as_s32(const v_##_Tpv& v) { return v_int32x4(vreinterpretq_s32_##suffix(v.val)); } \
inline v_uint64x2 v_reinterpret_as_u64(const v_##_Tpv& v) { return v_uint64x2(vreinterpretq_u64_##suffix(v.val)); } \
inline v_int64x2 v_reinterpret_as_s64(const v_##_Tpv& v) { return v_int64x2(vreinterpretq_s64_##suffix(v.val)); } \
inline v_float32x4 v_reinterpret_as_f32(const v_##_Tpv& v) { return v_float32x4(vreinterpretq_f32_##suffix(v.val)); }
 
OPENCV_HAL_IMPL_NEON_INIT(uint8x16, uchar, u8)
OPENCV_HAL_IMPL_NEON_INIT(int8x16, schar, s8)
OPENCV_HAL_IMPL_NEON_INIT(uint16x8, ushort, u16)
OPENCV_HAL_IMPL_NEON_INIT(int16x8, short, s16)
OPENCV_HAL_IMPL_NEON_INIT(uint32x4, unsigned, u32)
OPENCV_HAL_IMPL_NEON_INIT(int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_INIT(uint64x2, uint64, u64)
OPENCV_HAL_IMPL_NEON_INIT(int64x2, int64, s64)
OPENCV_HAL_IMPL_NEON_INIT(float32x4, float, f32)
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_INIT_64(_Tpv, suffix) \
inline v_float64x2 v_reinterpret_as_f64(const v_##_Tpv& v) { return v_float64x2(vreinterpretq_f64_##suffix(v.val)); }
OPENCV_HAL_IMPL_NEON_INIT(float64x2, double, f64)
OPENCV_HAL_IMPL_NEON_INIT_64(uint8x16, u8)
OPENCV_HAL_IMPL_NEON_INIT_64(int8x16, s8)
OPENCV_HAL_IMPL_NEON_INIT_64(uint16x8, u16)
OPENCV_HAL_IMPL_NEON_INIT_64(int16x8, s16)
OPENCV_HAL_IMPL_NEON_INIT_64(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_INIT_64(int32x4, s32)
OPENCV_HAL_IMPL_NEON_INIT_64(uint64x2, u64)
OPENCV_HAL_IMPL_NEON_INIT_64(int64x2, s64)
OPENCV_HAL_IMPL_NEON_INIT_64(float32x4, f32)
OPENCV_HAL_IMPL_NEON_INIT_64(float64x2, f64)
#endif
 
#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, wsuffix, pack, op) \
inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
    hreg a1 = vqmov##op##_##wsuffix(a.val), b1 = vqmov##op##_##wsuffix(b.val); \
    return _Tpvec(vcombine_##suffix(a1, b1)); \
} \
inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
    hreg a1 = vqmov##op##_##wsuffix(a.val); \
    vst1_##suffix(ptr, a1); \
} \
template<int n> inline \
_Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \
{ \
    hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
    hreg b1 = vqrshr##op##_n_##wsuffix(b.val, n); \
    return _Tpvec(vcombine_##suffix(a1, b1)); \
} \
template<int n> inline \
void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
{ \
    hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
    vst1_##suffix(ptr, a1); \
}
 
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, u16, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, s16, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, u32, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, s32, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, u64, pack, n)
OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, s64, pack, n)
 
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, s16, pack_u, un)
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, s32, pack_u, un)
 
inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
                            const v_float32x4& m1, const v_float32x4& m2,
                            const v_float32x4& m3)
{
    float32x2_t vl = vget_low_f32(v.val), vh = vget_high_f32(v.val);
    float32x4_t res = vmulq_lane_f32(m0.val, vl, 0);
    res = vmlaq_lane_f32(res, m1.val, vl, 1);
    res = vmlaq_lane_f32(res, m2.val, vh, 0);
    res = vmlaq_lane_f32(res, m3.val, vh, 1);
    return v_float32x4(res);
}
 
#define OPENCV_HAL_IMPL_NEON_BIN_OP(bin_op, _Tpvec, intrin) \
inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \
{ \
    return _Tpvec(intrin(a.val, b.val)); \
} \
inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \
{ \
    a.val = intrin(a.val, b.val); \
    return a; \
}
 
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint8x16, vqaddq_u8)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint8x16, vqsubq_u8)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int8x16, vqaddq_s8)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int8x16, vqsubq_s8)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint16x8, vqaddq_u16)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint16x8, vqsubq_u16)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint16x8, vmulq_u16)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int16x8, vqaddq_s16)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int16x8, vqsubq_s16)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int16x8, vmulq_s16)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int32x4, vaddq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int32x4, vsubq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int32x4, vmulq_s32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint32x4, vaddq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint32x4, vsubq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint32x4, vmulq_u32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float32x4, vaddq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float32x4, vsubq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float32x4, vmulq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int64x2, vaddq_s64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int64x2, vsubq_s64)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint64x2, vaddq_u64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint64x2, vsubq_u64)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float32x4, vdivq_f32)
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float64x2, vaddq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float64x2, vsubq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float64x2, vmulq_f64)
OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float64x2, vdivq_f64)
#else
inline v_float32x4 operator / (const v_float32x4& a, const v_float32x4& b)
{
    float32x4_t reciprocal = vrecpeq_f32(b.val);
    reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
    reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
    return v_float32x4(vmulq_f32(a.val, reciprocal));
}
inline v_float32x4& operator /= (v_float32x4& a, const v_float32x4& b)
{
    float32x4_t reciprocal = vrecpeq_f32(b.val);
    reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
    reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
    a.val = vmulq_f32(a.val, reciprocal);
    return a;
}
#endif
 
inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b,
                         v_int32x4& c, v_int32x4& d)
{
    c.val = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val));
    d.val = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val));
}
 
inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b,
                         v_uint32x4& c, v_uint32x4& d)
{
    c.val = vmull_u16(vget_low_u16(a.val), vget_low_u16(b.val));
    d.val = vmull_u16(vget_high_u16(a.val), vget_high_u16(b.val));
}
 
inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b,
                         v_uint64x2& c, v_uint64x2& d)
{
    c.val = vmull_u32(vget_low_u32(a.val), vget_low_u32(b.val));
    d.val = vmull_u32(vget_high_u32(a.val), vget_high_u32(b.val));
}
 
inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b)
{
    int32x4_t c = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val));
    int32x4_t d = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val));
    int32x4x2_t cd = vuzpq_s32(c, d);
    return v_int32x4(vaddq_s32(cd.val[0], cd.val[1]));
}
 
#define OPENCV_HAL_IMPL_NEON_LOGIC_OP(_Tpvec, suffix) \
    OPENCV_HAL_IMPL_NEON_BIN_OP(&, _Tpvec, vandq_##suffix) \
    OPENCV_HAL_IMPL_NEON_BIN_OP(|, _Tpvec, vorrq_##suffix) \
    OPENCV_HAL_IMPL_NEON_BIN_OP(^, _Tpvec, veorq_##suffix) \
    inline _Tpvec operator ~ (const _Tpvec& a) \
    { \
        return _Tpvec(vreinterpretq_##suffix##_u8(vmvnq_u8(vreinterpretq_u8_##suffix(a.val)))); \
    }
 
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint8x16, u8)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int8x16, s8)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint16x8, u16)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int16x8, s16)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint32x4, u32)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int32x4, s32)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint64x2, u64)
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int64x2, s64)
 
#define OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(bin_op, intrin) \
inline v_float32x4 operator bin_op (const v_float32x4& a, const v_float32x4& b) \
{ \
    return v_float32x4(vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val)))); \
} \
inline v_float32x4& operator bin_op##= (v_float32x4& a, const v_float32x4& b) \
{ \
    a.val = vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val))); \
    return a; \
}
 
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(&, vandq_s32)
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(|, vorrq_s32)
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(^, veorq_s32)
 
inline v_float32x4 operator ~ (const v_float32x4& a)
{
    return v_float32x4(vreinterpretq_f32_s32(vmvnq_s32(vreinterpretq_s32_f32(a.val))));
}
 
#if CV_SIMD128_64F
inline v_float32x4 v_sqrt(const v_float32x4& x)
{
    return v_float32x4(vsqrtq_f32(x.val));
}
 
inline v_float32x4 v_invsqrt(const v_float32x4& x)
{
    v_float32x4 one = v_setall_f32(1.0f);
    return one / v_sqrt(x);
}
#else
inline v_float32x4 v_sqrt(const v_float32x4& x)
{
    float32x4_t x1 = vmaxq_f32(x.val, vdupq_n_f32(FLT_MIN));
    float32x4_t e = vrsqrteq_f32(x1);
    e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
    e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
    return v_float32x4(vmulq_f32(x.val, e));
}
 
inline v_float32x4 v_invsqrt(const v_float32x4& x)
{
    float32x4_t e = vrsqrteq_f32(x.val);
    e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e);
    e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e);
    return v_float32x4(e);
}
#endif
 
#define OPENCV_HAL_IMPL_NEON_ABS(_Tpuvec, _Tpsvec, usuffix, ssuffix) \
inline _Tpuvec v_abs(const _Tpsvec& a) { return v_reinterpret_as_##usuffix(_Tpsvec(vabsq_##ssuffix(a.val))); }
 
OPENCV_HAL_IMPL_NEON_ABS(v_uint8x16, v_int8x16, u8, s8)
OPENCV_HAL_IMPL_NEON_ABS(v_uint16x8, v_int16x8, u16, s16)
OPENCV_HAL_IMPL_NEON_ABS(v_uint32x4, v_int32x4, u32, s32)
 
inline v_float32x4 v_abs(v_float32x4 x)
{ return v_float32x4(vabsq_f32(x.val)); }
 
#if CV_SIMD128_64F
#define OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(bin_op, intrin) \
inline v_float64x2 operator bin_op (const v_float64x2& a, const v_float64x2& b) \
{ \
    return v_float64x2(vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val)))); \
} \
inline v_float64x2& operator bin_op##= (v_float64x2& a, const v_float64x2& b) \
{ \
    a.val = vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val))); \
    return a; \
}
 
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(&, vandq_s64)
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(|, vorrq_s64)
OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(^, veorq_s64)
 
inline v_float64x2 operator ~ (const v_float64x2& a)
{
    return v_float64x2(vreinterpretq_f64_s32(vmvnq_s32(vreinterpretq_s32_f64(a.val))));
}
 
inline v_float64x2 v_sqrt(const v_float64x2& x)
{
    return v_float64x2(vsqrtq_f64(x.val));
}
 
inline v_float64x2 v_invsqrt(const v_float64x2& x)
{
    v_float64x2 one = v_setall_f64(1.0f);
    return one / v_sqrt(x);
}
 
inline v_float64x2 v_abs(v_float64x2 x)
{ return v_float64x2(vabsq_f64(x.val)); }
#endif
 
// TODO: exp, log, sin, cos
 
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC(_Tpvec, func, intrin) \
inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \
{ \
    return _Tpvec(intrin(a.val, b.val)); \
}
 
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_min, vminq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_max, vmaxq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_min, vminq_s8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_max, vmaxq_s8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_min, vminq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_max, vmaxq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_min, vminq_s16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_max, vmaxq_s16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_min, vminq_u32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_max, vmaxq_u32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_min, vminq_s32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_max, vmaxq_s32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_min, vminq_f32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_max, vmaxq_f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_min, vminq_f64)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_max, vmaxq_f64)
#endif
 
#if CV_SIMD128_64F
inline int64x2_t vmvnq_s64(int64x2_t a)
{
    int64x2_t vx = vreinterpretq_s64_u32(vdupq_n_u32(0xFFFFFFFF));
    return veorq_s64(a, vx);
}
inline uint64x2_t vmvnq_u64(uint64x2_t a)
{
    uint64x2_t vx = vreinterpretq_u64_u32(vdupq_n_u32(0xFFFFFFFF));
    return veorq_u64(a, vx);
}
#endif
#define OPENCV_HAL_IMPL_NEON_INT_CMP_OP(_Tpvec, cast, suffix, not_suffix) \
inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vceqq_##suffix(a.val, b.val))); } \
inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vmvnq_##not_suffix(vceqq_##suffix(a.val, b.val)))); } \
inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vcltq_##suffix(a.val, b.val))); } \
inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vcgtq_##suffix(a.val, b.val))); } \
inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vcleq_##suffix(a.val, b.val))); } \
inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \
{ return _Tpvec(cast(vcgeq_##suffix(a.val, b.val))); }
 
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint8x16, OPENCV_HAL_NOP, u8, u8)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int8x16, vreinterpretq_s8_u8, s8, u8)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint16x8, OPENCV_HAL_NOP, u16, u16)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int16x8, vreinterpretq_s16_u16, s16, u16)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint32x4, OPENCV_HAL_NOP, u32, u32)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int32x4, vreinterpretq_s32_u32, s32, u32)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float32x4, vreinterpretq_f32_u32, f32, u32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint64x2, OPENCV_HAL_NOP, u64, u64)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int64x2, vreinterpretq_s64_u64, s64, u64)
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float64x2, vreinterpretq_f64_u64, f64, u64)
#endif
 
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_add_wrap, vaddq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_add_wrap, vaddq_s16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_sub_wrap, vsubq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_sub_wrap, vsubq_s8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_sub_wrap, vsubq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_sub_wrap, vsubq_s16)
 
// TODO: absdiff for signed integers
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_absdiff, vabdq_u8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_absdiff, vabdq_u16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_absdiff, vabdq_u32)
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_absdiff, vabdq_f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_absdiff, vabdq_f64)
#endif
 
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \
inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \
{ \
    return _Tpvec2(cast(intrin(a.val, b.val))); \
}
 
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int8x16, v_uint8x16, vreinterpretq_u8_s8, v_absdiff, vabdq_s8)
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int16x8, v_uint16x8, vreinterpretq_u16_s16, v_absdiff, vabdq_s16)
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int32x4, v_uint32x4, vreinterpretq_u32_s32, v_absdiff, vabdq_s32)
 
inline v_float32x4 v_magnitude(const v_float32x4& a, const v_float32x4& b)
{
    v_float32x4 x(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val));
    return v_sqrt(x);
}
 
inline v_float32x4 v_sqr_magnitude(const v_float32x4& a, const v_float32x4& b)
{
    return v_float32x4(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val));
}
 
inline v_float32x4 v_muladd(const v_float32x4& a, const v_float32x4& b, const v_float32x4& c)
{
    return v_float32x4(vmlaq_f32(c.val, a.val, b.val));
}
 
#if CV_SIMD128_64F
inline v_float64x2 v_magnitude(const v_float64x2& a, const v_float64x2& b)
{
    v_float64x2 x(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val)));
    return v_sqrt(x);
}
 
inline v_float64x2 v_sqr_magnitude(const v_float64x2& a, const v_float64x2& b)
{
    return v_float64x2(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val)));
}
 
inline v_float64x2 v_muladd(const v_float64x2& a, const v_float64x2& b, const v_float64x2& c)
{
    return v_float64x2(vaddq_f64(c.val, vmulq_f64(a.val, b.val)));
}
#endif
 
// trade efficiency for convenience
#define OPENCV_HAL_IMPL_NEON_SHIFT_OP(_Tpvec, suffix, _Tps, ssuffix) \
inline _Tpvec operator << (const _Tpvec& a, int n) \
{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)n))); } \
inline _Tpvec operator >> (const _Tpvec& a, int n) \
{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)-n))); } \
template<int n> inline _Tpvec v_shl(const _Tpvec& a) \
{ return _Tpvec(vshlq_n_##suffix(a.val, n)); } \
template<int n> inline _Tpvec v_shr(const _Tpvec& a) \
{ return _Tpvec(vshrq_n_##suffix(a.val, n)); } \
template<int n> inline _Tpvec v_rshr(const _Tpvec& a) \
{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); }
 
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint8x16, u8, schar, s8)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int8x16, s8, schar, s8)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint16x8, u16, short, s16)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int16x8, s16, short, s16)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint32x4, u32, int, s32)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int32x4, s32, int, s32)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint64x2, u64, int64, s64)
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int64x2, s64, int64, s64)
 
#define OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(_Tpvec, _Tp, suffix) \
inline _Tpvec v_load(const _Tp* ptr) \
{ return _Tpvec(vld1q_##suffix(ptr)); } \
inline _Tpvec v_load_aligned(const _Tp* ptr) \
{ return _Tpvec(vld1q_##suffix(ptr)); } \
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr0), vld1_##suffix(ptr1))); } \
inline void v_store(_Tp* ptr, const _Tpvec& a) \
{ vst1q_##suffix(ptr, a.val); } \
inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \
{ vst1q_##suffix(ptr, a.val); } \
inline void v_store_low(_Tp* ptr, const _Tpvec& a) \
{ vst1_##suffix(ptr, vget_low_##suffix(a.val)); } \
inline void v_store_high(_Tp* ptr, const _Tpvec& a) \
{ vst1_##suffix(ptr, vget_high_##suffix(a.val)); }
 
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint8x16, uchar, u8)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int8x16, schar, s8)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint16x8, ushort, u16)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int16x8, short, s16)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint32x4, unsigned, u32)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint64x2, uint64, u64)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int64x2, int64, s64)
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float64x2, double, f64)
#endif
 
#if CV_FP16
// Workaround for old comiplers
inline v_float16x4 v_load_f16(const short* ptr)
{ return v_float16x4(cv_vld1_f16(ptr)); }
inline void v_store_f16(short* ptr, v_float16x4& a)
{ cv_vst1_f16(ptr, a.val); }
#endif
 
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \
inline scalartype v_reduce_##func(const _Tpvec& a) \
{ \
    _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \
    a0 = vp##vectorfunc##_##suffix(a0, a0); \
    return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, a0),0); \
}
 
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, sum, add, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, max, max, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, min, min, u16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, sum, add, s16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, max, max, s16)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, min, min, s16)
 
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \
inline scalartype v_reduce_##func(const _Tpvec& a) \
{ \
    _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \
    return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, vget_high_##suffix(a.val)),0); \
}
 
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, sum, add, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, max, max, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, min, min, u32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, sum, add, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, max, max, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, min, min, s32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, sum, add, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, max, max, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, min, min, f32)
 
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
                                 const v_float32x4& c, const v_float32x4& d)
{
    float32x4x2_t ab = vtrnq_f32(a.val, b.val);
    float32x4x2_t cd = vtrnq_f32(c.val, d.val);
 
    float32x4_t u0 = vaddq_f32(ab.val[0], ab.val[1]); // a0+a1 b0+b1 a2+a3 b2+b3
    float32x4_t u1 = vaddq_f32(cd.val[0], cd.val[1]); // c0+c1 d0+d1 c2+c3 d2+d3
 
    float32x4_t v0 = vcombine_f32(vget_low_f32(u0), vget_low_f32(u1));
    float32x4_t v1 = vcombine_f32(vget_high_f32(u0), vget_high_f32(u1));
 
    return v_float32x4(vaddq_f32(v0, v1));
}
 
#define OPENCV_HAL_IMPL_NEON_POPCOUNT(_Tpvec, cast) \
inline v_uint32x4 v_popcount(const _Tpvec& a) \
{ \
    uint8x16_t t = vcntq_u8(cast(a.val)); \
    uint16x8_t t0 = vpaddlq_u8(t);  /* 16 -> 8 */ \
    uint32x4_t t1 = vpaddlq_u16(t0); /* 8 -> 4 */ \
    return v_uint32x4(t1); \
}
 
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint8x16, OPENCV_HAL_NOP)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint16x8, vreinterpretq_u8_u16)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_uint32x4, vreinterpretq_u8_u32)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int8x16, vreinterpretq_u8_s8)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int16x8, vreinterpretq_u8_s16)
OPENCV_HAL_IMPL_NEON_POPCOUNT(v_int32x4, vreinterpretq_u8_s32)
 
inline int v_signmask(const v_uint8x16& a)
{
    int8x8_t m0 = vcreate_s8(CV_BIG_UINT(0x0706050403020100));
    uint8x16_t v0 = vshlq_u8(vshrq_n_u8(a.val, 7), vcombine_s8(m0, m0));
    uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(v0)));
    return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 8);
}
inline int v_signmask(const v_int8x16& a)
{ return v_signmask(v_reinterpret_as_u8(a)); }
 
inline int v_signmask(const v_uint16x8& a)
{
    int16x4_t m0 = vcreate_s16(CV_BIG_UINT(0x0003000200010000));
    uint16x8_t v0 = vshlq_u16(vshrq_n_u16(a.val, 15), vcombine_s16(m0, m0));
    uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(v0));
    return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 4);
}
inline int v_signmask(const v_int16x8& a)
{ return v_signmask(v_reinterpret_as_u16(a)); }
 
inline int v_signmask(const v_uint32x4& a)
{
    int32x2_t m0 = vcreate_s32(CV_BIG_UINT(0x0000000100000000));
    uint32x4_t v0 = vshlq_u32(vshrq_n_u32(a.val, 31), vcombine_s32(m0, m0));
    uint64x2_t v1 = vpaddlq_u32(v0);
    return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 2);
}
inline int v_signmask(const v_int32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
inline int v_signmask(const v_float32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_uint64x2& a)
{
    int64x1_t m0 = vdup_n_s64(0);
    uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0));
    return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1);
}
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#endif
 
#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \
inline bool v_check_all(const v_##_Tpvec& a) \
{ \
    _Tpvec##_t v0 = vshrq_n_##suffix(vmvnq_##suffix(a.val), shift); \
    uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \
    return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) == 0; \
} \
inline bool v_check_any(const v_##_Tpvec& a) \
{ \
    _Tpvec##_t v0 = vshrq_n_##suffix(a.val, shift); \
    uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \
    return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) != 0; \
}
 
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint8x16, u8, 7)
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint16x8, u16, 15)
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint32x4, u32, 31)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint64x2, u64, 63)
#endif
 
inline bool v_check_all(const v_int8x16& a)
{ return v_check_all(v_reinterpret_as_u8(a)); }
inline bool v_check_all(const v_int16x8& a)
{ return v_check_all(v_reinterpret_as_u16(a)); }
inline bool v_check_all(const v_int32x4& a)
{ return v_check_all(v_reinterpret_as_u32(a)); }
inline bool v_check_all(const v_float32x4& a)
{ return v_check_all(v_reinterpret_as_u32(a)); }
 
inline bool v_check_any(const v_int8x16& a)
{ return v_check_any(v_reinterpret_as_u8(a)); }
inline bool v_check_any(const v_int16x8& a)
{ return v_check_any(v_reinterpret_as_u16(a)); }
inline bool v_check_any(const v_int32x4& a)
{ return v_check_any(v_reinterpret_as_u32(a)); }
inline bool v_check_any(const v_float32x4& a)
{ return v_check_any(v_reinterpret_as_u32(a)); }
 
#if CV_SIMD128_64F
inline bool v_check_all(const v_int64x2& a)
{ return v_check_all(v_reinterpret_as_u64(a)); }
inline bool v_check_all(const v_float64x2& a)
{ return v_check_all(v_reinterpret_as_u64(a)); }
inline bool v_check_any(const v_int64x2& a)
{ return v_check_any(v_reinterpret_as_u64(a)); }
inline bool v_check_any(const v_float64x2& a)
{ return v_check_any(v_reinterpret_as_u64(a)); }
#endif
 
#define OPENCV_HAL_IMPL_NEON_SELECT(_Tpvec, suffix, usuffix) \
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \
{ \
    return _Tpvec(vbslq_##suffix(vreinterpretq_##usuffix##_##suffix(mask.val), a.val, b.val)); \
}
 
OPENCV_HAL_IMPL_NEON_SELECT(v_uint8x16, u8, u8)
OPENCV_HAL_IMPL_NEON_SELECT(v_int8x16, s8, u8)
OPENCV_HAL_IMPL_NEON_SELECT(v_uint16x8, u16, u16)
OPENCV_HAL_IMPL_NEON_SELECT(v_int16x8, s16, u16)
OPENCV_HAL_IMPL_NEON_SELECT(v_uint32x4, u32, u32)
OPENCV_HAL_IMPL_NEON_SELECT(v_int32x4, s32, u32)
OPENCV_HAL_IMPL_NEON_SELECT(v_float32x4, f32, u32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_SELECT(v_float64x2, f64, u64)
#endif
 
#define OPENCV_HAL_IMPL_NEON_EXPAND(_Tpvec, _Tpwvec, _Tp, suffix) \
inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \
{ \
    b0.val = vmovl_##suffix(vget_low_##suffix(a.val)); \
    b1.val = vmovl_##suffix(vget_high_##suffix(a.val)); \
} \
inline _Tpwvec v_load_expand(const _Tp* ptr) \
{ \
    return _Tpwvec(vmovl_##suffix(vld1_##suffix(ptr))); \
}
 
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint8x16, v_uint16x8, uchar, u8)
OPENCV_HAL_IMPL_NEON_EXPAND(v_int8x16, v_int16x8, schar, s8)
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint16x8, v_uint32x4, ushort, u16)
OPENCV_HAL_IMPL_NEON_EXPAND(v_int16x8, v_int32x4, short, s16)
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint32x4, v_uint64x2, uint, u32)
OPENCV_HAL_IMPL_NEON_EXPAND(v_int32x4, v_int64x2, int, s32)
 
inline v_uint32x4 v_load_expand_q(const uchar* ptr)
{
    uint8x8_t v0 = vcreate_u8(*(unsigned*)ptr);
    uint16x4_t v1 = vget_low_u16(vmovl_u8(v0));
    return v_uint32x4(vmovl_u16(v1));
}
 
inline v_int32x4 v_load_expand_q(const schar* ptr)
{
    int8x8_t v0 = vcreate_s8(*(unsigned*)ptr);
    int16x4_t v1 = vget_low_s16(vmovl_s8(v0));
    return v_int32x4(vmovl_s16(v1));
}
 
#if defined(__aarch64__)
#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \
inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \
{ \
    b0.val = vzip1q_##suffix(a0.val, a1.val); \
    b1.val = vzip2q_##suffix(a0.val, a1.val); \
} \
inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \
} \
inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \
} \
inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \
{ \
    c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \
    d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \
}
#else
#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \
inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \
{ \
    _Tpvec##x2_t p = vzipq_##suffix(a0.val, a1.val); \
    b0.val = p.val[0]; \
    b1.val = p.val[1]; \
} \
inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \
} \
inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \
} \
inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \
{ \
    c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \
    d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \
}
#endif
 
OPENCV_HAL_IMPL_NEON_UNPACKS(uint8x16, u8)
OPENCV_HAL_IMPL_NEON_UNPACKS(int8x16, s8)
OPENCV_HAL_IMPL_NEON_UNPACKS(uint16x8, u16)
OPENCV_HAL_IMPL_NEON_UNPACKS(int16x8, s16)
OPENCV_HAL_IMPL_NEON_UNPACKS(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_UNPACKS(int32x4, s32)
OPENCV_HAL_IMPL_NEON_UNPACKS(float32x4, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_UNPACKS(float64x2, f64)
#endif
 
#define OPENCV_HAL_IMPL_NEON_EXTRACT(_Tpvec, suffix) \
template <int s> \
inline v_##_Tpvec v_extract(const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    return v_##_Tpvec(vextq_##suffix(a.val, b.val, s)); \
}
 
OPENCV_HAL_IMPL_NEON_EXTRACT(uint8x16, u8)
OPENCV_HAL_IMPL_NEON_EXTRACT(int8x16, s8)
OPENCV_HAL_IMPL_NEON_EXTRACT(uint16x8, u16)
OPENCV_HAL_IMPL_NEON_EXTRACT(int16x8, s16)
OPENCV_HAL_IMPL_NEON_EXTRACT(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_EXTRACT(int32x4, s32)
OPENCV_HAL_IMPL_NEON_EXTRACT(uint64x2, u64)
OPENCV_HAL_IMPL_NEON_EXTRACT(int64x2, s64)
OPENCV_HAL_IMPL_NEON_EXTRACT(float32x4, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_EXTRACT(float64x2, f64)
#endif
 
inline v_int32x4 v_round(const v_float32x4& a)
{
    static const int32x4_t v_sign = vdupq_n_s32(1 << 31),
        v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f));
 
    int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(a.val)));
    return v_int32x4(vcvtq_s32_f32(vaddq_f32(a.val, vreinterpretq_f32_s32(v_addition))));
}
 
inline v_int32x4 v_floor(const v_float32x4& a)
{
    int32x4_t a1 = vcvtq_s32_f32(a.val);
    uint32x4_t mask = vcgtq_f32(vcvtq_f32_s32(a1), a.val);
    return v_int32x4(vaddq_s32(a1, vreinterpretq_s32_u32(mask)));
}
 
inline v_int32x4 v_ceil(const v_float32x4& a)
{
    int32x4_t a1 = vcvtq_s32_f32(a.val);
    uint32x4_t mask = vcgtq_f32(a.val, vcvtq_f32_s32(a1));
    return v_int32x4(vsubq_s32(a1, vreinterpretq_s32_u32(mask)));
}
 
inline v_int32x4 v_trunc(const v_float32x4& a)
{ return v_int32x4(vcvtq_s32_f32(a.val)); }
 
#if CV_SIMD128_64F
inline v_int32x4 v_round(const v_float64x2& a)
{
    static const int32x2_t zero = vdup_n_s32(0);
    return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero));
}
 
inline v_int32x4 v_floor(const v_float64x2& a)
{
    static const int32x2_t zero = vdup_n_s32(0);
    int64x2_t a1 = vcvtq_s64_f64(a.val);
    uint64x2_t mask = vcgtq_f64(vcvtq_f64_s64(a1), a.val);
    a1 = vaddq_s64(a1, vreinterpretq_s64_u64(mask));
    return v_int32x4(vcombine_s32(vmovn_s64(a1), zero));
}
 
inline v_int32x4 v_ceil(const v_float64x2& a)
{
    static const int32x2_t zero = vdup_n_s32(0);
    int64x2_t a1 = vcvtq_s64_f64(a.val);
    uint64x2_t mask = vcgtq_f64(a.val, vcvtq_f64_s64(a1));
    a1 = vsubq_s64(a1, vreinterpretq_s64_u64(mask));
    return v_int32x4(vcombine_s32(vmovn_s64(a1), zero));
}
 
inline v_int32x4 v_trunc(const v_float64x2& a)
{
    static const int32x2_t zero = vdup_n_s32(0);
    return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero));
}
#endif
 
#define OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(_Tpvec, suffix) \
inline void v_transpose4x4(const v_##_Tpvec& a0, const v_##_Tpvec& a1, \
                         const v_##_Tpvec& a2, const v_##_Tpvec& a3, \
                         v_##_Tpvec& b0, v_##_Tpvec& b1, \
                         v_##_Tpvec& b2, v_##_Tpvec& b3) \
{ \
    /* m00 m01 m02 m03 */ \
    /* m10 m11 m12 m13 */ \
    /* m20 m21 m22 m23 */ \
    /* m30 m31 m32 m33 */ \
    _Tpvec##x2_t t0 = vtrnq_##suffix(a0.val, a1.val); \
    _Tpvec##x2_t t1 = vtrnq_##suffix(a2.val, a3.val); \
    /* m00 m10 m02 m12 */ \
    /* m01 m11 m03 m13 */ \
    /* m20 m30 m22 m32 */ \
    /* m21 m31 m23 m33 */ \
    b0.val = vcombine_##suffix(vget_low_##suffix(t0.val[0]), vget_low_##suffix(t1.val[0])); \
    b1.val = vcombine_##suffix(vget_low_##suffix(t0.val[1]), vget_low_##suffix(t1.val[1])); \
    b2.val = vcombine_##suffix(vget_high_##suffix(t0.val[0]), vget_high_##suffix(t1.val[0])); \
    b3.val = vcombine_##suffix(vget_high_##suffix(t0.val[1]), vget_high_##suffix(t1.val[1])); \
}
 
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(uint32x4, u32)
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(int32x4, s32)
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(float32x4, f32)
 
#define OPENCV_HAL_IMPL_NEON_INTERLEAVED(_Tpvec, _Tp, suffix) \
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b) \
{ \
    _Tpvec##x2_t v = vld2q_##suffix(ptr); \
    a.val = v.val[0]; \
    b.val = v.val[1]; \
} \
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, v_##_Tpvec& c) \
{ \
    _Tpvec##x3_t v = vld3q_##suffix(ptr); \
    a.val = v.val[0]; \
    b.val = v.val[1]; \
    c.val = v.val[2]; \
} \
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, \
                                v_##_Tpvec& c, v_##_Tpvec& d) \
{ \
    _Tpvec##x4_t v = vld4q_##suffix(ptr); \
    a.val = v.val[0]; \
    b.val = v.val[1]; \
    c.val = v.val[2]; \
    d.val = v.val[3]; \
} \
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b) \
{ \
    _Tpvec##x2_t v; \
    v.val[0] = a.val; \
    v.val[1] = b.val; \
    vst2q_##suffix(ptr, v); \
} \
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, const v_##_Tpvec& c) \
{ \
    _Tpvec##x3_t v; \
    v.val[0] = a.val; \
    v.val[1] = b.val; \
    v.val[2] = c.val; \
    vst3q_##suffix(ptr, v); \
} \
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, \
                               const v_##_Tpvec& c, const v_##_Tpvec& d) \
{ \
    _Tpvec##x4_t v; \
    v.val[0] = a.val; \
    v.val[1] = b.val; \
    v.val[2] = c.val; \
    v.val[3] = d.val; \
    vst4q_##suffix(ptr, v); \
}
 
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint8x16, uchar, u8)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int8x16, schar, s8)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint16x8, ushort, u16)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int16x8, short, s16)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint32x4, unsigned, u32)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int32x4, int, s32)
OPENCV_HAL_IMPL_NEON_INTERLEAVED(float32x4, float, f32)
#if CV_SIMD128_64F
OPENCV_HAL_IMPL_NEON_INTERLEAVED(float64x2, double, f64)
#endif
 
inline v_float32x4 v_cvt_f32(const v_int32x4& a)
{
    return v_float32x4(vcvtq_f32_s32(a.val));
}
 
#if CV_SIMD128_64F
inline v_float32x4 v_cvt_f32(const v_float64x2& a)
{
    float32x2_t zero = vdup_n_f32(0.0f);
    return v_float32x4(vcombine_f32(vcvt_f32_f64(a.val), zero));
}
 
inline v_float64x2 v_cvt_f64(const v_int32x4& a)
{
    return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_low_s32(a.val))));
}
 
inline v_float64x2 v_cvt_f64_high(const v_int32x4& a)
{
    return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_high_s32(a.val))));
}
 
inline v_float64x2 v_cvt_f64(const v_float32x4& a)
{
    return v_float64x2(vcvt_f64_f32(vget_low_f32(a.val)));
}
 
inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
{
    return v_float64x2(vcvt_f64_f32(vget_high_f32(a.val)));
}
#endif
 
#if CV_FP16
inline v_float32x4 v_cvt_f32(const v_float16x4& a)
{
    return v_float32x4(vcvt_f32_f16(a.val));
}
 
inline v_float16x4 v_cvt_f16(const v_float32x4& a)
{
    return v_float16x4(vcvt_f16_f32(a.val));
}
#endif
 
//! @name Check SIMD support
//! @{
//! @brief Check CPU capability of SIMD operation
static inline bool hasSIMD128()
{
    return (CV_CPU_HAS_SUPPORT_NEON) ? true : false;
}
 
//! @}
 
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
 
//! @endcond
 
}
 
#endif