zhaoqingang
2025-02-27 345f2822f5072c34d9f969ae077830af968043b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import io
import json
 
import fitz
 
from Log import logger
from app.config.agent_base_url import RG_CHAT_DIALOG, DF_CHAT_AGENT, DF_CHAT_PARAMETERS, RG_CHAT_SESSIONS, \
    DF_CHAT_WORKFLOW, DF_UPLOAD_FILE
from app.config.config import settings
from app.config.const import *
from app.models import DialogModel, ApiTokenModel, UserTokenModel
from app.models.v2.session_model import ChatSessionDao, ChatData
from app.service.v2.app_driver.chat_agent import ChatAgent
from app.service.v2.app_driver.chat_data import ChatBaseApply
from app.service.v2.app_driver.chat_dialog import ChatDialog
from app.service.v2.app_driver.chat_workflow import ChatWorkflow
from docx import Document
from dashscope import get_tokenizer  # dashscope版本 >= 1.14.0
 
 
async def update_session_log(db, session_id: str, message: dict, conversation_id: str):
    await ChatSessionDao(db).update_session_by_id(
        session_id=session_id,
        session=None,
        message=message,
        conversation_id=conversation_id
    )
 
 
async def add_session_log(db, session_id: str, question: str, chat_id: str, user_id, event_type: str,
                          conversation_id: str, agent_type):
    try:
        session = await ChatSessionDao(db).update_or_insert_by_id(
            session_id=session_id,
            name=question[:255],
            agent_id=chat_id,
            agent_type=agent_type,
            tenant_id=user_id,
            message={"role": "user", "content": question},
            conversation_id=conversation_id,
            event_type=event_type
        )
        return session
    except Exception as e:
        logger.error(e)
    return None
 
async def get_app_token(db, app_id):
    app_token = db.query(UserTokenModel).filter_by(id=app_id).first()
    if app_token:
        return app_token.access_token
    return ""
 
 
 
async def get_chat_token(db, app_id):
    app_token = db.query(ApiTokenModel).filter_by(app_id=app_id).first()
    if app_token:
        return app_token.token
    return ""
 
 
async def add_chat_token(db, data):
    try:
        api_token = ApiTokenModel(**data)
        db.add(api_token)
        db.commit()
    except Exception as e:
        logger.error(e)
 
 
 
async def get_chat_info(db, chat_id: str):
    return db.query(DialogModel).filter_by(id=chat_id, status=Dialog_STATSU_ON).first()
 
 
async def get_chat_object(mode):
    if mode == workflow_chat:
        url = settings.dify_base_url + DF_CHAT_WORKFLOW
        return ChatWorkflow(), url
    else:
        url = settings.dify_base_url + DF_CHAT_AGENT
        return ChatAgent(), url
 
 
async def service_chat_dialog(db, chat_id: str, question: str, session_id: str, user_id, mode: str):
    conversation_id = ""
    token = await get_chat_token(db, rg_api_token)
    url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id)
    chat = ChatDialog()
    session = await add_session_log(db, session_id, question, chat_id, user_id, mode, session_id, 1)
    if session:
        conversation_id = session.conversation_id
    message = {"role": "assistant", "answer": "", "reference": {}}
    try:
        async for ans in chat.chat_completions(url, await chat.request_data(question, conversation_id),
                                               await chat.get_headers(token)):
            data = {}
            error = ""
            status = http_200
            if ans.get("code", None) == 102:
                error = ans.get("message", "error!")
                status = http_400
                event = smart_message_error
            else:
                if isinstance(ans.get("data"), bool) and ans.get("data") is True:
                    event = smart_message_end
                else:
                    data = ans.get("data", {})
                    # conversation_id = data.get("session_id", "")
                    if "session_id" in data:
                        del data["session_id"]
                    message = data
                    event = smart_message_cover
            message_str = "data: " + json.dumps(
                {"event": event, "data": data, "error": error, "status": status, "session_id": session_id},
                ensure_ascii=False) + "\n\n"
            for i in range(0, len(message_str), max_chunk_size):
                chunk = message_str[i:i + max_chunk_size]
                # print(chunk)
                yield chunk  # 发送分块消息
    except Exception as e:
 
        logger.error(e)
        try:
            yield "data: " + json.dumps({"message": smart_message_error,
                                         "error": "\n**ERROR**: " + str(e), "status": http_500},
                                        ensure_ascii=False) + "\n\n"
        except:
            ...
    finally:
        message["role"] = "assistant"
        await update_session_log(db, session_id, message, conversation_id)
 
async def data_process(data):
    if isinstance(data, str):
        return data.replace("dify", "smart")
    elif isinstance(data, dict):
        for k in list(data.keys()):
            if isinstance(k, str) and "dify" in k:
                new_k = k.replace("dify", "smart")
                data[new_k] = await data_process(data[k])
                del data[k]
            else:
                data[k] = await data_process(data[k])
        return data
    elif isinstance(data, list):
        for i in range(len(data)):
            data[i] = await data_process(data[i])
        return data
    else:
        return data
 
 
async def service_chat_workflow(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str):
    conversation_id = ""
    answer_event = ""
    answer_agent = ""
    answer_workflow = ""
    download_url = ""
    message_id = ""
    task_id = ""
    error = ""
    files = []
    node_list = []
    token = await get_chat_token(db, chat_id)
    chat, url = await get_chat_object(mode)
    if hasattr(chat_data, "query"):
        query = chat_data.query
    else:
        query = "start new workflow"
    session = await add_session_log(db, session_id,query if query else "start new conversation", chat_id, user_id, mode, conversation_id, 3)
    if session:
        conversation_id = session.conversation_id
    try:
        async for ans in chat.chat_completions(url,
                                               await chat.request_data(query, conversation_id, str(user_id), chat_data),
                                               await chat.get_headers(token)):
            data = {}
            status = http_200
            conversation_id = ans.get("conversation_id")
            task_id = ans.get("task_id")
            if ans.get("event") == message_error:
                error = ans.get("message", "参数异常!")
                status = http_400
                event = smart_message_error
            elif ans.get("event") == message_agent:
                data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")}
                answer_agent += ans.get("answer", "")
                message_id = ans.get("message_id", "")
                event = smart_message_stream
            elif ans.get("event") == message_event:
                data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")}
                answer_event += ans.get("answer", "")
                message_id = ans.get("message_id", "")
                event = smart_message_stream
            elif ans.get("event") == message_file:
                data = {"url": ans.get("url", ""), "id": ans.get("id", ""),
                        "type": ans.get("type", "")}
                files.append(data)
                event = smart_message_file
            elif ans.get("event") in [workflow_started, node_started, node_finished]:
                data = ans.get("data", {})
                data["inputs"] = await data_process(data.get("inputs", {}))
                data["outputs"] = await data_process(data.get("outputs", {}))
                data["files"] = await data_process(data.get("files", []))
                data["process_data"] = ""
                if data.get("status") == "failed":
                    status = http_500
                    error = data.get("error", "")
                node_list.append(ans)
                event = [smart_workflow_started, smart_node_started, smart_node_finished][
                    [workflow_started, node_started, node_finished].index(ans.get("event"))]
            elif ans.get("event") == workflow_finished:
                data = ans.get("data", {})
                answer_workflow = data.get("outputs", {}).get("output")
                download_url = data.get("outputs", {}).get("download_url")
                event = smart_workflow_finished
                if data.get("status") == "failed":
                    status = http_500
                    error = data.get("error", "")
                node_list.append(ans)
 
            elif ans.get("event") == message_end:
                event = smart_message_end
            else:
                continue
 
            yield "data: " + json.dumps(
                {"event": event, "data": data, "error": error, "status": status, "task_id": task_id,
                 "session_id": session_id},
                ensure_ascii=False) + "\n\n"
 
    except Exception as e:
        logger.error(e)
        try:
            yield "data: " + json.dumps({"message": smart_message_error,
                                         "error": "\n**ERROR**: " + str(e), "status": http_500},
                                        ensure_ascii=False) + "\n\n"
        except:
            ...
    finally:
        await update_session_log(db, session_id, {"role": "assistant", "answer": answer_event or answer_agent or answer_workflow or error,
                                                  "download_url":download_url,
                                                  "node_list": node_list, "task_id": task_id, "id": message_id,
                                                  "error": error}, conversation_id)
 
 
async def service_chat_basic(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str):
    ...
 
 
async def service_chat_parameters(db, chat_id, user_id):
    chat_info = db.query(DialogModel).filter_by(id=chat_id).first()
    if not chat_info:
        return {}
    return chat_info.parameters
 
async def service_chat_sessions(db, chat_id, name):
    token = await get_chat_token(db, rg_api_token)
    if not token:
        return {}
    url = settings.fwr_base_url + RG_CHAT_SESSIONS.format(chat_id)
    chat = ChatDialog()
    return await chat.chat_sessions(url, {"name": name}, await chat.get_headers(token))
 
 
async def service_chat_sessions_list(db, chat_id, current, page_size, user_id, keyword):
    total, session_list = await ChatSessionDao(db).get_session_list(
        user_id=user_id,
        agent_id=chat_id,
        keyword=keyword,
        page=current,
        page_size=page_size
    )
    return json.dumps({"total":total, "rows": [session.to_dict() for session in session_list]})
 
 
 
async def service_chat_session_log(db, session_id):
    session_log = await ChatSessionDao(db).get_session_by_id(session_id)
    return json.dumps(session_log.log_to_json())
 
 
 
async def service_chat_upload(db, chat_id, file, user_id):
    files = []
    token = await get_chat_token(db, chat_id)
    if not token:
        return files
    url = settings.dify_base_url + DF_UPLOAD_FILE
    chat = ChatBaseApply()
    for f in file:
        try:
            file_content = await f.read()
            file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)},
                                                 {'Authorization': f'Bearer {token}'})
            try:
                tokens = await read_file(file_content, f.filename, f.content_type)
                file_upload["tokens"] = tokens
            except:
                ...
            files.append(file_upload)
        except Exception as e:
            logger.error(e)
    return json.dumps(files) if files else ""
 
 
async def get_str_token(input_str):
    # 获取tokenizer对象,目前只支持通义千问系列模型
    tokenizer = get_tokenizer('qwen-turbo')
    # 将字符串切分成token并转换为token id
    tokens = tokenizer.encode(input_str)
    return len(tokens)
 
async def read_pdf(pdf_stream):
    text = ""
    with fitz.open(stream=pdf_stream, filetype="pdf") as pdf_document:
        for page in pdf_document:
            text += page.get_text()
    return text
 
 
async def read_word(word_stream):
    # 使用 python-docx 打开 Word 文件流
    doc = Document(io.BytesIO(word_stream))
 
    # 提取每个段落的文本
    text = ""
    for para in doc.paragraphs:
        text += para.text
 
    return text
 
async def read_file(file, filename, content_type):
    text = ""
    if content_type == "application/pdf" or filename.endswith('.pdf'):
 
        # 提取 PDF 内容
        text = await read_pdf(file)
    elif content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" or filename.endswith(
            '.docx'):
        text = await read_word(file)
 
    return await get_str_token(text)