import asyncio
|
import base64
|
import io
|
import json
|
import os
|
import re
|
|
import requests
|
import torch
|
import logging
|
from PIL import Image
|
from logging.handlers import RotatingFileHandler
|
|
class detect_tasks():
|
def __init__(self):
|
#线程名称
|
self._thread_name = ''
|
|
# 初始化Milvus集合
|
self.collection = None
|
# 初始化llm
|
self.llm = None
|
|
def remove_duplicate_lines(self,text):
|
seen = set()
|
result = []
|
for line in text.split('。'): # 按句号分割
|
if line.strip() and line not in seen:
|
seen.add(line)
|
result.append(line)
|
return '。'.join(result)
|
def remove_duplicate_lines_d(self,text):
|
seen = set()
|
result = []
|
for line in text.split(','): # 按句号分割
|
if line.strip() and line not in seen:
|
seen.add(line)
|
result.append(line)
|
return '。'.join(result)
|
def remove_duplicate_lines_n(self,text):
|
seen = set()
|
result = []
|
for line in text.split('\n'): # 按句号分割
|
if line.strip() and line not in seen:
|
seen.add(line)
|
result.append(line)
|
return '。'.join(result)
|
|
def init_logging(self,logname):
|
# 创建实例专属logger
|
self.logger = logging.getLogger(f"{self.__class__}_{id(self)}")
|
self.logger.setLevel(logging.INFO)
|
# 避免重复添加handler
|
if not self.logger.handlers:
|
handler = RotatingFileHandler(
|
filename=os.path.join("logs", logname+'_log.log'),
|
maxBytes=10 * 1024 * 1024,
|
backupCount=3,
|
encoding='utf-8'
|
)
|
formatter = logging.Formatter(
|
'%(asctime)s - %(filename)s:%(lineno)d - %(funcName)s() - %(levelname)s: %(message)s'
|
)
|
handler.setFormatter(formatter)
|
self.logger.addHandler(handler)
|
|
def image_desc(self,image_path):
|
try:
|
image_des = None
|
# 构造多模态消息
|
messages = [
|
{
|
"role": "user",
|
"content": [
|
{"type": "text", "text": "请详细描述图片中的目标信息及特征。返回格式为整段文字描述"},
|
{
|
"type": "image_url",
|
"image_url": {
|
"url": f"data:image/jpeg;base64,{self.image_to_base64(image_path)}"
|
}
|
}
|
]
|
}
|
]
|
|
# 发送请求
|
#self.logger.info("发送请求")
|
response = self.llm.invoke(messages)
|
if response and response.content:
|
image_des = response.content
|
if len(image_des) > 4 and image_des.startswith("这张图片"):
|
image_des = image_des[4:]
|
|
image_des = self.remove_duplicate_lines(image_des)
|
image_des = self.remove_duplicate_lines_d(image_des)
|
image_des = self.remove_duplicate_lines_n(image_des)
|
#self.logger.info(image_des)
|
else:
|
self.logger.info(f"{self._thread_name}线程:执行图片描述时出错:{image_path, response}")
|
return image_des
|
except Exception as e:
|
self.logger.info(f"{self._thread_name}线程:执行图片描述时出错:{image_path,e}")
|
return None
|
|
def get_rule(self,ragurl):
|
try:
|
rule_text = None
|
search_data = {
|
"collection_name": "smart_rule",
|
"query_text": "",
|
"search_mode": "hybrid",
|
"limit": 100,
|
"weight_dense": 0.7,
|
"weight_sparse": 0.3,
|
"filter_expr": "",
|
"output_fields": ["text"]
|
}
|
response = requests.post(ragurl + "/search", json=search_data)
|
results = response.json().get('results')
|
rule_text = ""
|
ruleid = 1
|
for rule in results:
|
if rule['score'] >= 0:
|
rule_text = rule_text + str(ruleid) + ". " + rule['entity'].get('text') + ";\n"
|
ruleid = ruleid + 1
|
# self.logger.info(len(rule_text))
|
else:
|
self.logger.info(f"{self._thread_name}线程:执行获取规则时出错:{response}")
|
return rule_text
|
except Exception as e:
|
self.logger.info(f"{self._thread_name}线程:执行获取规则时出错:{e}")
|
return None
|
|
def image_rule_chat(self, image_des,rule_text, ragurl, rag_mode,max_tokens):
|
try:
|
content = (
|
f"图片描述内容为:\n{image_des}\n规则内容:\n{rule_text}。\n请验证图片描述中是否有符合规则的内容,不进行推理和think。返回结果格式为[xxx符合的规则id],如果没有返回[]")
|
# self.logger.info(content)
|
#self.logger.info(len(content))
|
search_data = {
|
"prompt": "",
|
"messages": [
|
{
|
"role": "user",
|
"content": content
|
}
|
],
|
"llm_name": rag_mode,
|
"stream": False,
|
"gen_conf": {
|
"temperature": 0.7,
|
"max_tokens": max_tokens
|
}
|
}
|
response = requests.post(ragurl + "/chat", json=search_data)
|
results = response.json().get('data')
|
#self.logger.info(len(results))
|
# self.logger.info(results)
|
ret = re.sub(r'<think>.*?</think>', '', results, flags=re.DOTALL)
|
ret = ret.replace(" ", "").replace("\t", "").replace("\n", "")
|
is_waning = 0
|
if len(ret) > 2:
|
is_waning = 1
|
return is_waning
|
except Exception as e:
|
self.logger.info(f"{self._thread_name}线程:执行规则匹配时出错:{image_des, rule_text, ragurl, rag_mode,e}")
|
return None
|
|
async def insert_json_data(self, ragurl, data):
|
try:
|
data = {'collection_name': "smartrag", "data": data, "description": ""}
|
requests.post(ragurl + "/insert_json_data", json=data, timeout=(0.3, 0.3))
|
#self.logger.info(f"调用录像服务:{ragurl, data}")
|
except Exception as e:
|
#self.logger.info(f"{self._thread_name}线程:调用录像时出错:地址:{ragurl}:{e}")
|
return
|
|
# 处理多模态输入(示例:文本+图像)
|
def image_to_base64(self,image_path):
|
with open(image_path, "rb") as img_file:
|
return base64.b64encode(img_file.read()).decode('utf-8')
|
|
def tark_do(self,res,ragurl,rag_mode,max_tokens):
|
try :
|
# 1. 从集合A获取向量和元数据
|
is_waning = 0
|
is_desc = 0
|
#res_a = self.collection.query(
|
# expr=f"id == {image_id}",
|
# output_fields=["id", "zh_desc_class", "text_vector", "bounding_box", "video_point_name", "task_id",
|
# "task_name","event_level_id","event_level_name",
|
# "video_point_id", "detect_num", "is_waning", "waning_value", "rule_id", "detect_id",
|
# "detect_time", "image_path", "image_desc_path", "video_path"],
|
# consistency_level="Strong"
|
#)
|
image_des = self.image_desc(f"{res['image_desc_path']}")
|
if image_des:
|
#rule_text = self.get_rule(ragurl)
|
is_waning = self.image_rule_chat(image_des,res['waning_value'],ragurl,rag_mode,max_tokens)
|
is_desc = 2
|
else:
|
is_waning = 0
|
is_desc = 3
|
data = {
|
"id": res['id'],
|
"event_level_id": res['event_level_id'], # event_level_id
|
"event_level_name": res['event_level_name'], # event_level_id
|
"rule_id": res["rule_id"],
|
"video_point_id": res['video_point_id'], # video_point_id
|
"video_point_name": res['video_point_name'],
|
"is_waning": is_waning,
|
"is_desc": is_desc,
|
"zh_desc_class": image_des, # text_vector
|
"bounding_box": res['bounding_box'], # bounding_box
|
"task_id": res['task_id'], # task_id
|
"task_name": res['task_name'], # task_id
|
"detect_id": res['detect_id'], # detect_id
|
"detect_time": res['detect_time'], # detect_time
|
"detect_num": res['detect_num'],
|
"waning_value": res['waning_value'],
|
"image_path": res['image_path'], # image_path
|
"image_desc_path": res['image_desc_path'], # image_desc_path
|
"video_path": res['video_path'],
|
"text_vector": res['text_vector']
|
}
|
# 保存到milvus
|
image_id = self.collection.upsert(data).primary_keys
|
if is_desc == 2 :
|
data = {
|
"id": str(image_id[0]),
|
"video_point_id": res['video_point_id'],
|
"video_path": res["video_point_name"],
|
"zh_desc_class": image_des,
|
"detect_time": res['detect_time'],
|
"image_path": f"{res['image_path']}",
|
"task_name": res["task_name"],
|
"event_level_name": res["event_level_name"],
|
"rtsp_address": f"{res['video_path']}"
|
}
|
#调用rag
|
asyncio.run(self.insert_json_data(ragurl, data))
|
return image_id
|
except Exception as e:
|
self.logger.info(f"{self._thread_name}线程:执行模型解析时出错:任务:{ res['id']} :{e}")
|
return 0
|