1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import time
from concurrent.futures import ThreadPoolExecutor
import threading
 
import torch
from PIL import Image
from pymilvus import connections, Collection
from datetime import datetime
import os
import requests
import asyncio
import logging
import re
from logging.handlers import RotatingFileHandler
 
from transformers import AutoModelForVision2Seq, AutoProcessor
 
 
class qwen_thread:
    def __init__(self, max_workers,config,model_path):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.semaphore = threading.Semaphore(max_workers)
        self.max_workers = max_workers
        # 初始化Milvus集合
        connections.connect("default", host=config.get("milvusurl"), port=config.get("milvusport"))
        # 加载集合
        self.collection = Collection(name="smartobject")
        self.collection.load()
 
        self.config = config
        self.model_pool = []
        self.lock_pool = [threading.Lock() for _ in range(max_workers)]
        for i in range(max_workers):
            model = AutoModelForVision2Seq.from_pretrained(
                model_path,
                device_map="cuda:1",
                trust_remote_code=True,
                torch_dtype=torch.float16
            ).eval()
            self.model_pool.append(model)
 
        # 共享的处理器 (线程安全)
        self.processor = AutoProcessor.from_pretrained(model_path,use_fast=True)
 
 
        # 创建实例专属logger
        self.logger = logging.getLogger(f"{self.__class__}_{id(self)}")
        self.logger.setLevel(logging.INFO)
        # 避免重复添加handler
        if not self.logger.handlers:
            handler = RotatingFileHandler(
                filename=os.path.join("logs", 'thread_log.log'),
                maxBytes=10 * 1024 * 1024,
                backupCount=3,
                encoding='utf-8'
            )
            formatter = logging.Formatter(
                '%(asctime)s - %(filename)s:%(lineno)d - %(funcName)s() - %(levelname)s: %(message)s'
            )
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)
 
    def submit(self,res_a):
        # 尝试获取信号量(非阻塞)
        acquired = self.semaphore.acquire(blocking=False)
 
        if not acquired:
            self.logger.info(f"线程池已满,等待空闲线程... (当前活跃: {self.max_workers - self.semaphore._value}/{self.max_workers})")
            # 阻塞等待直到有可用线程
            self.semaphore.acquire(blocking=True)
 
        future = self.executor.submit(self._wrap_task, res_a)
        future.add_done_callback(self._release_semaphore)
        return future
 
    def _wrap_task(self, res):
        try:
            #self.logger.info(f"处理: { res['id']}开始")
            current_time = datetime.now()
            image_id = self.tark_do(res, self.config.get("ragurl"), self.config.get("ragmode"), self.config.get("max_tokens"))
            self.logger.info(f"处理: { res['id']}完毕{image_id}:{datetime.now() - current_time}")
            return image_id
        except Exception as e:
            self.logger.info(f"任务 { res['id']} 处理出错: {e}")
            raise
 
    def tark_do(self,res,ragurl,rag_mode,max_tokens):
        try :
            # 1. 从集合A获取向量和元数据
            is_waning = 0
            image_des = self.image_desc(f"{res['image_desc_path']}")
            self.logger.info(image_des)
            if image_des:
                # rule_text = self.get_rule(ragurl)
                is_waning = self.image_rule_chat(image_des,res['waning_value'],ragurl,rag_mode,max_tokens)
                is_desc = 2
            else:
                is_waning = 0
                is_desc = 3
            data = {
                "id": res['id'],
                "event_level_id": res['event_level_id'],  # event_level_id
                "event_level_name": res['event_level_name'],  # event_level_id
                "rule_id": res["rule_id"],
                "video_point_id": res['video_point_id'],  # video_point_id
                "video_point_name": res['video_point_name'],
                "is_waning": is_waning,
                "is_desc": is_desc,
                "zh_desc_class": image_des,  # text_vector
                "bounding_box": res['bounding_box'],  # bounding_box
                "task_id": res['task_id'],  # task_id
                "task_name": res['task_name'],  # task_id
                "detect_id": res['detect_id'],  # detect_id
                "detect_time": res['detect_time'],  # detect_time
                "detect_num": res['detect_num'],
                "waning_value": res['waning_value'],
                "image_path": res['image_path'],  # image_path
                "image_desc_path": res['image_desc_path'],  # image_desc_path
                "video_path": res['video_path'],
                "text_vector": res['text_vector']
            }
            # 保存到milvus
            image_id = self.collection.upsert(data).primary_keys
            if is_desc == 2:
                data = {
                    "id": str(image_id[0]),
                    "video_point_id": res['video_point_id'],
                    "video_path": res["video_point_name"],
                    "zh_desc_class": image_des,
                    "detect_time": res['detect_time'],
                    "image_path": f"{res['image_path']}",
                    "task_name": res["task_name"],
                    "event_level_name": res["event_level_name"],
                    "rtsp_address": f"{res['video_path']}"
                }
                # 调用rag
                asyncio.run(self.insert_json_data(ragurl, data))
            return image_id
        except Exception as e:
            self.logger.info(f"线程:执行模型解析时出错:任务:{e}")
            return 0
 
    def image_desc(self, image_path):
        try:
            model, lock = self._acquire_model()
            # 2. 处理图像
            image = Image.open(image_path).convert("RGB")  # 替换为您的图片路径
            image = image.resize((600, 600), Image.Resampling.LANCZOS)  # 高质量缩放
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image",
                        },
                        {"type": "text", "text": "请详细描述图片中的目标信息及特征。返回格式为整段文字描述"},
                    ],
                }
            ]
            # Preparation for inference
            text = self.processor.apply_chat_template(
                messages, add_generation_prompt=True
            )
            inputs = self.processor(
                text=[text],
                images=[image],
                padding=True,
                return_tensors="pt",
            )
            inputs = inputs.to("cuda:1")
            current_time = datetime.now()
            outputs = model.generate(**inputs,
                                               max_new_tokens=300,
                                               do_sample=True,
                                               temperature=0.7,
                                               renormalize_logits=True
                                               )
            print(f"处理完毕:{datetime.now() - current_time}")
            generated_ids = outputs[:, len(inputs.input_ids[0]):]
            image_text = self.processor.batch_decode(
                generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
            )
            image_des = (image_text[0]).strip()
            return image_des
        except Exception as e:
            self.logger.info(f"线程:执行图片描述时出错:{e}")
        finally:
            # 4. 释放模型
            self._release_model(model)
            torch.cuda.empty_cache()
 
    def get_rule(self,ragurl):
        try:
            rule_text = None
            search_data = {
                "collection_name": "smart_rule",
                "query_text": "",
                "search_mode": "hybrid",
                "limit": 100,
                "weight_dense": 0.7,
                "weight_sparse": 0.3,
                "filter_expr": "",
                "output_fields": ["text"]
            }
            response = requests.post(ragurl + "/search", json=search_data)
            results = response.json().get('results')
            rule_text = ""
            ruleid = 1
            for rule in results:
                if rule['score'] >= 0:
                    rule_text = rule_text + str(ruleid) + ". " + rule['entity'].get('text') + ";\n"
                    ruleid = ruleid + 1
            # self.logger.info(len(rule_text))
            else:
                self.logger.info(f"线程:执行获取规则时出错:{response}")
            return rule_text
        except Exception as e:
            self.logger.info(f"线程:执行获取规则时出错:{e}")
            return None
 
    def image_rule_chat(self, image_des,rule_text, ragurl, rag_mode,max_tokens):
        try:
            content = (
                f"图片描述内容为:\n{image_des}\n规则内容:\n{rule_text}。\n请验证图片描述中是否有符合规则的内容,不进行推理和think。返回结果格式为[xxx符合的规则id],如果没有返回[]")
            # self.logger.info(content)
            #self.logger.info(len(content))
            search_data = {
                "prompt": "",
                "messages": [
                    {
                        "role": "user",
                        "content": content
                    }
                ],
                "llm_name": rag_mode,
                "stream": False,
                "gen_conf": {
                    "temperature": 0.7,
                    "max_tokens": max_tokens
                }
            }
            response = requests.post(ragurl + "/chat", json=search_data)
            results = response.json().get('data')
            #self.logger.info(len(results))
            # self.logger.info(results)
            ret = re.sub(r'<think>.*?</think>', '', results, flags=re.DOTALL)
            ret = ret.replace(" ", "").replace("\t", "").replace("\n", "")
            is_waning = 0
            if len(ret) > 2:
                is_waning = 1
            return is_waning
        except Exception as e:
            self.logger.info(f"线程:执行规则匹配时出错:{image_des, rule_text, ragurl, rag_mode,e}")
            return None
 
    async def insert_json_data(self, ragurl, data):
        try:
            data = {'collection_name': "smartrag", "data": data, "description": ""}
            requests.post(ragurl + "/insert_json_data", json=data, timeout=(0.3, 0.3))
            #self.logger.info(f"调用录像服务:{ragurl, data}")
        except Exception as e:
            #self.logger.info(f"{self._thread_name}线程:调用录像时出错:地址:{ragurl}:{e}")
            return
 
    def _release_semaphore(self, future):
        self.semaphore.release()
        self.logger.info(f"释放线程 (剩余空闲: {self.semaphore._value}/{self.max_workers})")
 
    def shutdown(self):
        """安全关闭"""
        self.executor.shutdown(wait=False)
        for model in self.model_pool:
            del model
        torch.cuda.empty_cache()
 
    def _acquire_model(self):
        """从池中获取一个空闲模型 (简单轮询)"""
        while True:
            for i, (model, lock) in enumerate(zip(self.model_pool, self.lock_pool)):
                if lock.acquire(blocking=False):
                    return model, lock
            time.sleep(0.1)  # 避免CPU空转
 
    def _release_model(self, model):
        """释放模型回池"""
        for i, m in enumerate(self.model_pool):
            if m == model:
                self.lock_pool[i].release()
                break
 
 
    def remove_duplicate_lines(self,text):
        seen = set()
        result = []
        for line in text.split('。'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_d(self,text):
        seen = set()
        result = []
        for line in text.split(','):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_n(self,text):
        seen = set()
        result = []
        for line in text.split('\n'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)