liuxiaolong
2021-07-20 232227035c8d6a31eaaf193863cbadda949c08fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Boost.Geometry (aka GGL, Generic Geometry Library)
 
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2013 Adam Wulkiewicz, Lodz, Poland.
 
// This file was modified by Oracle on 2013-2020.
// Modifications copyright (c) 2013-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
 
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
 
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
 
#ifndef BOOST_GEOMETRY_STRATEGY_CARTESIAN_POINT_IN_POLY_WINDING_HPP
#define BOOST_GEOMETRY_STRATEGY_CARTESIAN_POINT_IN_POLY_WINDING_HPP
 
 
#include <boost/geometry/core/tags.hpp>
 
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
 
#include <boost/geometry/strategy/cartesian/expand_point.hpp>
 
#include <boost/geometry/strategies/cartesian/point_in_box.hpp>
#include <boost/geometry/strategies/cartesian/disjoint_box_box.hpp>
#include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/within.hpp>
 
 
namespace boost { namespace geometry
{
 
namespace strategy { namespace within
{
 
 
/*!
\brief Within detection using winding rule in cartesian coordinate system.
\ingroup strategies
\tparam Point_ \tparam_point
\tparam PointOfSegment_ \tparam_segment_point
\tparam CalculationType \tparam_calculation
\author Barend Gehrels
 
\qbk{
[heading See also]
[link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
}
 */
template
<
    typename Point_ = void, // for backward compatibility
    typename PointOfSegment_ = Point_, // for backward compatibility
    typename CalculationType = void
>
class cartesian_winding
{
    template <typename Point, typename PointOfSegment>
    struct calculation_type
        : select_calculation_type
            <
                Point,
                PointOfSegment,
                CalculationType
            >
    {};
    
    /*! subclass to keep state */
    class counter
    {
        int m_count;
        bool m_touches;
 
        inline int code() const
        {
            return m_touches ? 0 : m_count == 0 ? -1 : 1;
        }
 
    public :
        friend class cartesian_winding;
 
        inline counter()
            : m_count(0)
            , m_touches(false)
        {}
 
    };
 
public:
    typedef cartesian_tag cs_tag;
 
    typedef side::side_by_triangle<CalculationType> side_strategy_type;
 
    static inline side_strategy_type get_side_strategy()
    {
        return side_strategy_type();
    }
 
    typedef expand::cartesian_point expand_point_strategy_type;
 
    typedef typename side_strategy_type::envelope_strategy_type envelope_strategy_type;
 
    static inline envelope_strategy_type get_envelope_strategy()
    {
        return side_strategy_type::get_envelope_strategy();
    }
 
    typedef typename side_strategy_type::disjoint_strategy_type disjoint_strategy_type;
 
    static inline disjoint_strategy_type get_disjoint_strategy()
    {
        return side_strategy_type::get_disjoint_strategy();
    }
 
    typedef typename side_strategy_type::equals_point_point_strategy_type equals_point_point_strategy_type;
    static inline equals_point_point_strategy_type get_equals_point_point_strategy()
    {
        return side_strategy_type::get_equals_point_point_strategy();
    }
 
    typedef disjoint::cartesian_box_box disjoint_box_box_strategy_type;
    static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy()
    {
        return disjoint_box_box_strategy_type();
    }
 
    typedef covered_by::cartesian_point_box disjoint_point_box_strategy_type;
 
    // Typedefs and static methods to fulfill the concept
    typedef counter state_type;
 
    template <typename Point, typename PointOfSegment>
    static inline bool apply(Point const& point,
                             PointOfSegment const& s1, PointOfSegment const& s2,
                             counter& state)
    {
        bool eq1 = false;
        bool eq2 = false;
 
        int count = check_segment(point, s1, s2, state, eq1, eq2);
        if (count != 0)
        {
            int side = 0;
            if (count == 1 || count == -1)
            {
                side = side_equal(point, eq1 ? s1 : s2, count);
            }
            else // count == 2 || count == -2
            {
                // 1 left, -1 right
                side = side_strategy_type::apply(s1, s2, point);
            }
            
            if (side == 0)
            {
                // Point is lying on segment
                state.m_touches = true;
                state.m_count = 0;
                return false;
            }
 
            // Side is NEG for right, POS for left.
            // The count is -2 for left, 2 for right (or -1/1)
            // Side positive thus means RIGHT and LEFTSIDE or LEFT and RIGHTSIDE
            // See accompagnying figure (TODO)
            if (side * count > 0)
            {
                state.m_count += count;
            }
        }
        return ! state.m_touches;
    }
 
    static inline int result(counter const& state)
    {
        return state.code();
    }
 
private:
    template <typename Point, typename PointOfSegment>
    static inline int check_segment(Point const& point,
                                    PointOfSegment const& seg1,
                                    PointOfSegment const& seg2,
                                    counter& state,
                                    bool& eq1, bool& eq2)
    {
        if (check_touch(point, seg1, seg2, state, eq1, eq2))
        {
            return 0;
        }
 
        return calculate_count(point, seg1, seg2, eq1, eq2);
    }
 
    template <typename Point, typename PointOfSegment>
    static inline bool check_touch(Point const& point,
                                   PointOfSegment const& seg1,
                                   PointOfSegment const& seg2,
                                   counter& state,
                                   bool& eq1, bool& eq2)
    {
        typedef typename calculation_type<Point, PointOfSegment>::type calc_t;
 
        calc_t const px = get<0>(point);
        calc_t const s1x = get<0>(seg1);
        calc_t const s2x = get<0>(seg2);
 
        eq1 = math::equals(s1x, px);
        eq2 = math::equals(s2x, px);
 
        // Both equal p -> segment vertical
        // The only thing which has to be done is check if point is ON segment
        if (eq1 && eq2)
        {
            calc_t const py = get<1>(point);
            calc_t const s1y = get<1>(seg1);
            calc_t const s2y = get<1>(seg2);
            if ((s1y <= py && s2y >= py) || (s2y <= py && s1y >= py))
            {
                state.m_touches = true;
            }
            return true;
        }
        return false;
    }
 
    template <typename Point, typename PointOfSegment>
    static inline int calculate_count(Point const& point,
                                      PointOfSegment const& seg1,
                                      PointOfSegment const& seg2,
                                      bool eq1, bool eq2)
    {
        typedef typename calculation_type<Point, PointOfSegment>::type calc_t;
 
        calc_t const p = get<0>(point);
        calc_t const s1 = get<0>(seg1);
        calc_t const s2 = get<0>(seg2);
 
        return eq1 ? (s2 > p ?  1 : -1)  // Point on level s1, E/W depending on s2
             : eq2 ? (s1 > p ? -1 :  1)  // idem
             : s1 < p && s2 > p ?  2     // Point between s1 -> s2 --> E
             : s2 < p && s1 > p ? -2     // Point between s2 -> s1 --> W
             : 0;
    }
 
    template <typename Point, typename PointOfSegment>
    static inline int side_equal(Point const& point,
                                 PointOfSegment const& se,
                                 int count)
    {
        // NOTE: for D=0 the signs would be reversed
        return math::equals(get<1>(point), get<1>(se)) ?
                0 :
                get<1>(point) < get<1>(se) ?
                    // assuming count is equal to 1 or -1
                    -count : // ( count > 0 ? -1 : 1) :
                    count;   // ( count > 0 ? 1 : -1) ;
    }
};
 
 
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
 
namespace services
{
 
template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, cartesian_tag, cartesian_tag>
{
    typedef cartesian_winding<> type;
};
 
template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, cartesian_tag, cartesian_tag>
{
    typedef cartesian_winding<> type;
};
 
} // namespace services
 
#endif
 
 
}} // namespace strategy::within
 
 
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace strategy { namespace covered_by { namespace services
{
 
template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, cartesian_tag, cartesian_tag>
{
    typedef within::cartesian_winding<> type;
};
 
template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, cartesian_tag, cartesian_tag>
{
    typedef within::cartesian_winding<> type;
};
 
}}} // namespace strategy::covered_by::services
#endif
 
 
}} // namespace boost::geometry
 
 
#endif // BOOST_GEOMETRY_STRATEGY_CARTESIAN_POINT_IN_POLY_WINDING_HPP