liuxiaolong
2021-07-20 232227035c8d6a31eaaf193863cbadda949c08fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Boost.Geometry (aka GGL, Generic Geometry Library)
 
// Copyright (c) 2016-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fisikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
 
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
 
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_BOX_BOX_HPP
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_BOX_BOX_HPP
 
 
#include <type_traits>
 
#include <boost/config.hpp>
#include <boost/concept_check.hpp>
 
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/core/tags.hpp>
 
#include <boost/geometry/strategies/distance.hpp>
#include <boost/geometry/strategies/concepts/distance_concept.hpp>
#include <boost/geometry/strategies/spherical/distance_cross_track.hpp>
 
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/algorithms/detail/assign_box_corners.hpp>
 
 
namespace boost { namespace geometry
{
 
namespace strategy { namespace distance
{
 
namespace details
{
 
template <typename ReturnType>
class cross_track_box_box_generic
{
public :
 
    template <typename Point, typename PPStrategy, typename PSStrategy>
    ReturnType static inline diagonal_case(Point topA,
                                           Point topB,
                                           Point bottomA,
                                           Point bottomB,
                                           bool north_shortest,
                                           bool non_overlap,
                                           PPStrategy pp_strategy,
                                           PSStrategy ps_strategy)
    {
        if (north_shortest && non_overlap)
        {
            return pp_strategy.apply(topA, bottomB);
        }
        if (north_shortest && !non_overlap)
        {
            return ps_strategy.apply(topA, topB, bottomB);
        }
        if (!north_shortest && non_overlap)
        {
            return pp_strategy.apply(bottomA, topB);
        }
        return ps_strategy.apply(bottomA, topB, bottomB);
    }
 
 
    template
    <
            typename Box1,
            typename Box2,
            typename PPStrategy,
            typename PSStrategy
    >
    ReturnType static inline apply (Box1 const& box1,
                                    Box2 const& box2,
                                    PPStrategy pp_strategy,
                                    PSStrategy ps_strategy)
    {
 
        // this method assumes that the coordinates of the point and
        // the box are normalized
 
        typedef typename point_type<Box1>::type box_point_type1;
        typedef typename point_type<Box2>::type box_point_type2;
 
        box_point_type1 bottom_left1, bottom_right1, top_left1, top_right1;
        geometry::detail::assign_box_corners(box1,
                                             bottom_left1, bottom_right1,
                                             top_left1, top_right1);
 
        box_point_type2 bottom_left2, bottom_right2, top_left2, top_right2;
        geometry::detail::assign_box_corners(box2,
                                             bottom_left2, bottom_right2,
                                             top_left2, top_right2);
 
        ReturnType lon_min1 = geometry::get_as_radian<0>(bottom_left1);
        ReturnType const lat_min1 = geometry::get_as_radian<1>(bottom_left1);
        ReturnType lon_max1 = geometry::get_as_radian<0>(top_right1);
        ReturnType const lat_max1 = geometry::get_as_radian<1>(top_right1);
 
        ReturnType lon_min2 = geometry::get_as_radian<0>(bottom_left2);
        ReturnType const lat_min2 = geometry::get_as_radian<1>(bottom_left2);
        ReturnType lon_max2 = geometry::get_as_radian<0>(top_right2);
        ReturnType const lat_max2 = geometry::get_as_radian<1>(top_right2);
 
        ReturnType const two_pi = math::two_pi<ReturnType>();
 
        // Test which sides of the boxes are closer and if boxes cross
        // antimeridian
        bool right_wrap;
 
        if (lon_min2 > 0 && lon_max2 < 0) // box2 crosses antimeridian
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(box2 crosses antimeridian)";
#endif
            right_wrap = lon_min2 - lon_max1 < lon_min1 - lon_max2;
            lon_max2 += two_pi;
            if (lon_min1 > 0 && lon_max1 < 0) // both boxes crosses antimeridian
            {
                lon_max1 += two_pi;
            }
        }
        else if (lon_min1 > 0 && lon_max1 < 0) // only box1 crosses antimeridian
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(box1 crosses antimeridian)";
#endif
            return apply(box2, box1, pp_strategy, ps_strategy);
        }
        else
        {
            right_wrap = lon_max1 <= lon_min2
                         ? lon_min2 - lon_max1 < two_pi - (lon_max2 - lon_min1)
                         : lon_min1 - lon_max2 > two_pi - (lon_max1 - lon_min2);
 
        }
 
        // Check1: if box2 crosses the band defined by the
        // minimum and maximum longitude of box1; if yes, determine
        // if the box2 is above, below or intersects/is inside box1 and compute
        // the distance (easy in this case)
 
        bool lon_min12 = lon_min1 <= lon_min2;
        bool right = lon_max1 <= lon_min2;
        bool left = lon_min1 >= lon_max2;
        bool lon_max12 = lon_max1 <= lon_max2;
 
        if ((lon_min12 && !right)
                || (!left && !lon_max12)
                || (!lon_min12 && lon_max12))
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(up-down)\n";
#endif
            if (lat_min1 > lat_max2)
            {
                return geometry::strategy::distance::services::result_from_distance
                    <
                        PSStrategy, box_point_type1, box_point_type2
                    >::apply(ps_strategy, ps_strategy
                               .vertical_or_meridian(lat_min1, lat_max2));
            }
            else if (lat_max1 < lat_min2)
            {
                return geometry::strategy::distance::services::result_from_distance
                    <
                        PSStrategy, box_point_type1, box_point_type2
                    >::apply(ps_strategy, ps_strategy
                             .vertical_or_meridian(lat_min2, lat_max1));
            }
            else
            {
                //BOOST_GEOMETRY_ASSERT(plat >= lat_min && plat <= lat_max);
                return ReturnType(0);
            }
        }
 
        // Check2: if box2 is right/left of box1
        // the max lat of box2 should be less than the max lat of box1
        bool bottom_max;
 
        ReturnType top_common = (std::min)(lat_max1, lat_max2);
        ReturnType bottom_common = (std::max)(lat_min1, lat_min2);
 
        // true if the closest points are on northern hemisphere
        bool north_shortest = top_common + bottom_common > 0;
        // true if box bands do not overlap
        bool non_overlap = top_common < bottom_common;
 
        if (north_shortest)
        {
            bottom_max = lat_max1 >= lat_max2;
        }
        else
        {
            bottom_max = lat_min1 <= lat_min2;
        }
 
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
        std::cout << "(diagonal)";
#endif
        if (bottom_max && !right_wrap)
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(bottom left)";
#endif
            return diagonal_case(top_right2, top_left1,
                                 bottom_right2, bottom_left1,
                                 north_shortest, non_overlap,
                                 pp_strategy, ps_strategy);
        }
        if (bottom_max && right_wrap)
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(bottom right)";
#endif
            return diagonal_case(top_left2, top_right1,
                                 bottom_left2, bottom_right1,
                                 north_shortest, non_overlap,
                                 pp_strategy, ps_strategy);
        }
        if (!bottom_max && !right_wrap)
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(top left)";
#endif
            return diagonal_case(top_left1, top_right2,
                                 bottom_left1, bottom_right2,
                                 north_shortest, non_overlap,
                                 pp_strategy, ps_strategy);
        }
        if (!bottom_max && right_wrap)
        {
#ifdef BOOST_GEOMETRY_DEBUG_CROSS_TRACK_BOX_BOX
            std::cout << "(top right)";
#endif
            return diagonal_case(top_right1, top_left2,
                                 bottom_right1, bottom_left2,
                                 north_shortest, non_overlap,
                                 pp_strategy, ps_strategy);
        }
        return ReturnType(0);
    }
};
 
} //namespace details
 
/*!
\brief Strategy functor for distance box to box calculation
\ingroup strategies
\details Class which calculates the distance of a box to a box, for
boxes on a sphere or globe
\tparam CalculationType \tparam_calculation
\tparam Strategy underlying point-segment distance strategy, defaults
to cross track
\qbk{
[heading See also]
[link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)]
}
*/
template
<
    typename CalculationType = void,
    typename Strategy = haversine<double, CalculationType>
>
class cross_track_box_box
{
public:
    template <typename Box1, typename Box2>
    struct return_type
        : services::return_type<Strategy,
                                typename point_type<Box1>::type,
                                typename point_type<Box2>::type>
    {};
 
    typedef typename Strategy::radius_type radius_type;
 
    // strategy getters
 
    // point-segment strategy getters
    struct distance_ps_strategy
    {
        typedef cross_track<CalculationType, Strategy> type;
    };
 
    typedef typename strategy::distance::services::comparable_type
        <
            Strategy
        >::type pp_comparable_strategy;
 
    typedef std::conditional_t
        <
            std::is_same
                <
                    pp_comparable_strategy,
                    Strategy
                >::value,
            typename strategy::distance::services::comparable_type
                <
                    typename distance_ps_strategy::type
                >::type,
            typename distance_ps_strategy::type
        > ps_strategy_type;
 
    // constructors
 
    inline cross_track_box_box()
    {}
 
    explicit inline cross_track_box_box(typename Strategy::radius_type const& r)
        : m_strategy(r)
    {}
 
    inline cross_track_box_box(Strategy const& s)
        : m_strategy(s)
    {}
 
 
    // It might be useful in the future
    // to overload constructor with strategy info.
    // crosstrack(...) {}
 
    template <typename Box1, typename Box2>
    inline typename return_type<Box1, Box2>::type
    apply(Box1 const& box1, Box2 const& box2) const
    {
#if !defined(BOOST_MSVC)
        BOOST_CONCEPT_ASSERT
            (
                (concepts::PointDistanceStrategy
                    <
                        Strategy,
                        typename point_type<Box1>::type,
                        typename point_type<Box2>::type
                    >)
            );
#endif
        typedef typename return_type<Box1, Box2>::type return_type;
        return details::cross_track_box_box_generic
                                <return_type>::apply(box1, box2,
                                                     m_strategy,
                                                     ps_strategy_type(m_strategy));
    }
 
    inline typename Strategy::radius_type radius() const
    {
        return m_strategy.radius();
    }
 
private:
    Strategy m_strategy;
};
 
 
 
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
 
template <typename CalculationType, typename Strategy>
struct tag<cross_track_box_box<CalculationType, Strategy> >
{
    typedef strategy_tag_distance_box_box type;
};
 
 
template <typename CalculationType, typename Strategy, typename Box1, typename Box2>
struct return_type<cross_track_box_box<CalculationType, Strategy>, Box1, Box2>
    : cross_track_box_box
        <
            CalculationType, Strategy
        >::template return_type<Box1, Box2>
{};
 
 
template <typename CalculationType, typename Strategy>
struct comparable_type<cross_track_box_box<CalculationType, Strategy> >
{
    typedef cross_track_box_box
        <
            CalculationType, typename comparable_type<Strategy>::type
        > type;
};
 
 
template <typename CalculationType, typename Strategy>
struct get_comparable<cross_track_box_box<CalculationType, Strategy> >
{
    typedef cross_track_box_box<CalculationType, Strategy> this_strategy;
    typedef typename comparable_type<this_strategy>::type comparable_type;
 
public:
    static inline comparable_type apply(this_strategy const& strategy)
    {
        return comparable_type(strategy.radius());
    }
};
 
 
template <typename CalculationType, typename Strategy, typename Box1, typename Box2>
struct result_from_distance
    <
        cross_track_box_box<CalculationType, Strategy>, Box1, Box2
    >
{
private:
    typedef cross_track_box_box<CalculationType, Strategy> this_strategy;
 
    typedef typename this_strategy::template return_type
        <
            Box1, Box2
        >::type return_type;
 
public:
    template <typename T>
    static inline return_type apply(this_strategy const& strategy,
                                    T const& distance)
    {
        Strategy s(strategy.radius());
 
        return result_from_distance
            <
                Strategy,
                typename point_type<Box1>::type,
                typename point_type<Box2>::type
            >::apply(s, distance);
    }
};
 
 
// define cross_track_box_box<default_point_segment_strategy> as
// default box-box strategy for the spherical equatorial coordinate system
template <typename Box1, typename Box2, typename Strategy>
struct default_strategy
    <
        box_tag, box_tag, Box1, Box2,
        spherical_equatorial_tag, spherical_equatorial_tag,
        Strategy
    >
{
    typedef cross_track_box_box
        <
            void,
            std::conditional_t
                <
                    std::is_void<Strategy>::value,
                    typename default_strategy
                        <
                            point_tag, point_tag,
                            typename point_type<Box1>::type, typename point_type<Box2>::type,
                            spherical_equatorial_tag, spherical_equatorial_tag
                        >::type,
                    Strategy
                >
        > type;
};
 
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
 
 
}} // namespace strategy::distance
 
 
}} // namespace boost::geometry
 
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_DISTANCE_CROSS_TRACK_BOX_BOX_HPP