// Pattern-defeating quicksort
|
|
// Copyright Orson Peters 2017.
|
// Distributed under the Boost Software License, Version 1.0.
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
// See http://www.boost.org/libs/sort/ for library home page.
|
|
|
#ifndef BOOST_SORT_PDQSORT_HPP
|
#define BOOST_SORT_PDQSORT_HPP
|
|
#include <algorithm>
|
#include <cstddef>
|
#include <functional>
|
#include <iterator>
|
#include <utility>
|
#include <boost/type_traits.hpp>
|
|
#if __cplusplus >= 201103L
|
#include <cstdint>
|
#define BOOST_PDQSORT_PREFER_MOVE(x) std::move(x)
|
#else
|
#define BOOST_PDQSORT_PREFER_MOVE(x) (x)
|
#endif
|
|
namespace boost {
|
namespace sort {
|
|
namespace pdqsort_detail {
|
enum {
|
// Partitions below this size are sorted using insertion sort.
|
insertion_sort_threshold = 24,
|
|
// Partitions above this size use Tukey's ninther to select the pivot.
|
ninther_threshold = 128,
|
|
// When we detect an already sorted partition, attempt an insertion sort that allows this
|
// amount of element moves before giving up.
|
partial_insertion_sort_limit = 8,
|
|
// Must be multiple of 8 due to loop unrolling, and < 256 to fit in unsigned char.
|
block_size = 64,
|
|
// Cacheline size, assumes power of two.
|
cacheline_size = 64
|
};
|
|
template<class T> struct is_default_compare : boost::false_type { };
|
template<class T> struct is_default_compare<std::less<T> > : boost::true_type { };
|
template<class T> struct is_default_compare<std::greater<T> > : boost::true_type { };
|
|
// Returns floor(log2(n)), assumes n > 0.
|
template<class T>
|
inline int log2(T n) {
|
int log = 0;
|
while (n >>= 1) ++log;
|
return log;
|
}
|
|
// Sorts [begin, end) using insertion sort with the given comparison function.
|
template<class Iter, class Compare>
|
inline void insertion_sort(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
if (begin == end) return;
|
|
for (Iter cur = begin + 1; cur != end; ++cur) {
|
Iter sift = cur;
|
Iter sift_1 = cur - 1;
|
|
// Compare first so we can avoid 2 moves for an element already positioned correctly.
|
if (comp(*sift, *sift_1)) {
|
T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);
|
|
do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
|
while (sift != begin && comp(tmp, *--sift_1));
|
|
*sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
|
}
|
}
|
}
|
|
// Sorts [begin, end) using insertion sort with the given comparison function. Assumes
|
// *(begin - 1) is an element smaller than or equal to any element in [begin, end).
|
template<class Iter, class Compare>
|
inline void unguarded_insertion_sort(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
if (begin == end) return;
|
|
for (Iter cur = begin + 1; cur != end; ++cur) {
|
Iter sift = cur;
|
Iter sift_1 = cur - 1;
|
|
// Compare first so we can avoid 2 moves for an element already positioned correctly.
|
if (comp(*sift, *sift_1)) {
|
T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);
|
|
do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
|
while (comp(tmp, *--sift_1));
|
|
*sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
|
}
|
}
|
}
|
|
// Attempts to use insertion sort on [begin, end). Will return false if more than
|
// partial_insertion_sort_limit elements were moved, and abort sorting. Otherwise it will
|
// successfully sort and return true.
|
template<class Iter, class Compare>
|
inline bool partial_insertion_sort(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
if (begin == end) return true;
|
|
std::size_t limit = 0;
|
for (Iter cur = begin + 1; cur != end; ++cur) {
|
Iter sift = cur;
|
Iter sift_1 = cur - 1;
|
|
// Compare first so we can avoid 2 moves for an element already positioned correctly.
|
if (comp(*sift, *sift_1)) {
|
T tmp = BOOST_PDQSORT_PREFER_MOVE(*sift);
|
|
do { *sift-- = BOOST_PDQSORT_PREFER_MOVE(*sift_1); }
|
while (sift != begin && comp(tmp, *--sift_1));
|
|
*sift = BOOST_PDQSORT_PREFER_MOVE(tmp);
|
limit += cur - sift;
|
}
|
|
if (limit > partial_insertion_sort_limit) return false;
|
}
|
|
return true;
|
}
|
|
template<class Iter, class Compare>
|
inline void sort2(Iter a, Iter b, Compare comp) {
|
if (comp(*b, *a)) std::iter_swap(a, b);
|
}
|
|
// Sorts the elements *a, *b and *c using comparison function comp.
|
template<class Iter, class Compare>
|
inline void sort3(Iter a, Iter b, Iter c, Compare comp) {
|
sort2(a, b, comp);
|
sort2(b, c, comp);
|
sort2(a, b, comp);
|
}
|
|
template<class T>
|
inline T* align_cacheline(T* p) {
|
#if defined(UINTPTR_MAX) && __cplusplus >= 201103L
|
std::uintptr_t ip = reinterpret_cast<std::uintptr_t>(p);
|
#else
|
std::size_t ip = reinterpret_cast<std::size_t>(p);
|
#endif
|
ip = (ip + cacheline_size - 1) & -cacheline_size;
|
return reinterpret_cast<T*>(ip);
|
}
|
|
template<class Iter>
|
inline void swap_offsets(Iter first, Iter last,
|
unsigned char* offsets_l, unsigned char* offsets_r,
|
int num, bool use_swaps) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
if (use_swaps) {
|
// This case is needed for the descending distribution, where we need
|
// to have proper swapping for pdqsort to remain O(n).
|
for (int i = 0; i < num; ++i) {
|
std::iter_swap(first + offsets_l[i], last - offsets_r[i]);
|
}
|
} else if (num > 0) {
|
Iter l = first + offsets_l[0]; Iter r = last - offsets_r[0];
|
T tmp(BOOST_PDQSORT_PREFER_MOVE(*l)); *l = BOOST_PDQSORT_PREFER_MOVE(*r);
|
for (int i = 1; i < num; ++i) {
|
l = first + offsets_l[i]; *r = BOOST_PDQSORT_PREFER_MOVE(*l);
|
r = last - offsets_r[i]; *l = BOOST_PDQSORT_PREFER_MOVE(*r);
|
}
|
*r = BOOST_PDQSORT_PREFER_MOVE(tmp);
|
}
|
}
|
|
// Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
|
// to the pivot are put in the right-hand partition. Returns the position of the pivot after
|
// partitioning and whether the passed sequence already was correctly partitioned. Assumes the
|
// pivot is a median of at least 3 elements and that [begin, end) is at least
|
// insertion_sort_threshold long. Uses branchless partitioning.
|
template<class Iter, class Compare>
|
inline std::pair<Iter, bool> partition_right_branchless(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
|
// Move pivot into local for speed.
|
T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));
|
Iter first = begin;
|
Iter last = end;
|
|
// Find the first element greater than or equal than the pivot (the median of 3 guarantees
|
// this exists).
|
while (comp(*++first, pivot));
|
|
// Find the first element strictly smaller than the pivot. We have to guard this search if
|
// there was no element before *first.
|
if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
|
else while ( !comp(*--last, pivot));
|
|
// If the first pair of elements that should be swapped to partition are the same element,
|
// the passed in sequence already was correctly partitioned.
|
bool already_partitioned = first >= last;
|
if (!already_partitioned) {
|
std::iter_swap(first, last);
|
++first;
|
}
|
|
// The following branchless partitioning is derived from "BlockQuicksort: How Branch
|
// Mispredictions don't affect Quicksort" by Stefan Edelkamp and Armin Weiss.
|
unsigned char offsets_l_storage[block_size + cacheline_size];
|
unsigned char offsets_r_storage[block_size + cacheline_size];
|
unsigned char* offsets_l = align_cacheline(offsets_l_storage);
|
unsigned char* offsets_r = align_cacheline(offsets_r_storage);
|
int num_l, num_r, start_l, start_r;
|
num_l = num_r = start_l = start_r = 0;
|
|
while (last - first > 2 * block_size) {
|
// Fill up offset blocks with elements that are on the wrong side.
|
if (num_l == 0) {
|
start_l = 0;
|
Iter it = first;
|
for (unsigned char i = 0; i < block_size;) {
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
}
|
}
|
if (num_r == 0) {
|
start_r = 0;
|
Iter it = last;
|
for (unsigned char i = 0; i < block_size;) {
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
}
|
}
|
|
// Swap elements and update block sizes and first/last boundaries.
|
int num = (std::min)(num_l, num_r);
|
swap_offsets(first, last, offsets_l + start_l, offsets_r + start_r,
|
num, num_l == num_r);
|
num_l -= num; num_r -= num;
|
start_l += num; start_r += num;
|
if (num_l == 0) first += block_size;
|
if (num_r == 0) last -= block_size;
|
}
|
|
int l_size = 0, r_size = 0;
|
int unknown_left = (int)(last - first) - ((num_r || num_l) ? block_size : 0);
|
if (num_r) {
|
// Handle leftover block by assigning the unknown elements to the other block.
|
l_size = unknown_left;
|
r_size = block_size;
|
} else if (num_l) {
|
l_size = block_size;
|
r_size = unknown_left;
|
} else {
|
// No leftover block, split the unknown elements in two blocks.
|
l_size = unknown_left/2;
|
r_size = unknown_left - l_size;
|
}
|
|
// Fill offset buffers if needed.
|
if (unknown_left && !num_l) {
|
start_l = 0;
|
Iter it = first;
|
for (unsigned char i = 0; i < l_size;) {
|
offsets_l[num_l] = i++; num_l += !comp(*it, pivot); ++it;
|
}
|
}
|
if (unknown_left && !num_r) {
|
start_r = 0;
|
Iter it = last;
|
for (unsigned char i = 0; i < r_size;) {
|
offsets_r[num_r] = ++i; num_r += comp(*--it, pivot);
|
}
|
}
|
|
int num = (std::min)(num_l, num_r);
|
swap_offsets(first, last, offsets_l + start_l, offsets_r + start_r, num, num_l == num_r);
|
num_l -= num; num_r -= num;
|
start_l += num; start_r += num;
|
if (num_l == 0) first += l_size;
|
if (num_r == 0) last -= r_size;
|
|
// We have now fully identified [first, last)'s proper position. Swap the last elements.
|
if (num_l) {
|
offsets_l += start_l;
|
while (num_l--) std::iter_swap(first + offsets_l[num_l], --last);
|
first = last;
|
}
|
if (num_r) {
|
offsets_r += start_r;
|
while (num_r--) std::iter_swap(last - offsets_r[num_r], first), ++first;
|
last = first;
|
}
|
|
// Put the pivot in the right place.
|
Iter pivot_pos = first - 1;
|
*begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
|
*pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);
|
|
return std::make_pair(pivot_pos, already_partitioned);
|
}
|
|
// Partitions [begin, end) around pivot *begin using comparison function comp. Elements equal
|
// to the pivot are put in the right-hand partition. Returns the position of the pivot after
|
// partitioning and whether the passed sequence already was correctly partitioned. Assumes the
|
// pivot is a median of at least 3 elements and that [begin, end) is at least
|
// insertion_sort_threshold long.
|
template<class Iter, class Compare>
|
inline std::pair<Iter, bool> partition_right(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
|
// Move pivot into local for speed.
|
T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));
|
|
Iter first = begin;
|
Iter last = end;
|
|
// Find the first element greater than or equal than the pivot (the median of 3 guarantees
|
// this exists).
|
while (comp(*++first, pivot));
|
|
// Find the first element strictly smaller than the pivot. We have to guard this search if
|
// there was no element before *first.
|
if (first - 1 == begin) while (first < last && !comp(*--last, pivot));
|
else while ( !comp(*--last, pivot));
|
|
// If the first pair of elements that should be swapped to partition are the same element,
|
// the passed in sequence already was correctly partitioned.
|
bool already_partitioned = first >= last;
|
|
// Keep swapping pairs of elements that are on the wrong side of the pivot. Previously
|
// swapped pairs guard the searches, which is why the first iteration is special-cased
|
// above.
|
while (first < last) {
|
std::iter_swap(first, last);
|
while (comp(*++first, pivot));
|
while (!comp(*--last, pivot));
|
}
|
|
// Put the pivot in the right place.
|
Iter pivot_pos = first - 1;
|
*begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
|
*pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);
|
|
return std::make_pair(pivot_pos, already_partitioned);
|
}
|
|
// Similar function to the one above, except elements equal to the pivot are put to the left of
|
// the pivot and it doesn't check or return if the passed sequence already was partitioned.
|
// Since this is rarely used (the many equal case), and in that case pdqsort already has O(n)
|
// performance, no block quicksort is applied here for simplicity.
|
template<class Iter, class Compare>
|
inline Iter partition_left(Iter begin, Iter end, Compare comp) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
|
T pivot(BOOST_PDQSORT_PREFER_MOVE(*begin));
|
Iter first = begin;
|
Iter last = end;
|
|
while (comp(pivot, *--last));
|
|
if (last + 1 == end) while (first < last && !comp(pivot, *++first));
|
else while ( !comp(pivot, *++first));
|
|
while (first < last) {
|
std::iter_swap(first, last);
|
while (comp(pivot, *--last));
|
while (!comp(pivot, *++first));
|
}
|
|
Iter pivot_pos = last;
|
*begin = BOOST_PDQSORT_PREFER_MOVE(*pivot_pos);
|
*pivot_pos = BOOST_PDQSORT_PREFER_MOVE(pivot);
|
|
return pivot_pos;
|
}
|
|
|
template<class Iter, class Compare, bool Branchless>
|
inline void pdqsort_loop(Iter begin, Iter end, Compare comp, int bad_allowed, bool leftmost = true) {
|
typedef typename std::iterator_traits<Iter>::difference_type diff_t;
|
|
// Use a while loop for tail recursion elimination.
|
while (true) {
|
diff_t size = end - begin;
|
|
// Insertion sort is faster for small arrays.
|
if (size < insertion_sort_threshold) {
|
if (leftmost) insertion_sort(begin, end, comp);
|
else unguarded_insertion_sort(begin, end, comp);
|
return;
|
}
|
|
// Choose pivot as median of 3 or pseudomedian of 9.
|
diff_t s2 = size / 2;
|
if (size > ninther_threshold) {
|
sort3(begin, begin + s2, end - 1, comp);
|
sort3(begin + 1, begin + (s2 - 1), end - 2, comp);
|
sort3(begin + 2, begin + (s2 + 1), end - 3, comp);
|
sort3(begin + (s2 - 1), begin + s2, begin + (s2 + 1), comp);
|
std::iter_swap(begin, begin + s2);
|
} else sort3(begin + s2, begin, end - 1, comp);
|
|
// If *(begin - 1) is the end of the right partition of a previous partition operation
|
// there is no element in [begin, end) that is smaller than *(begin - 1). Then if our
|
// pivot compares equal to *(begin - 1) we change strategy, putting equal elements in
|
// the left partition, greater elements in the right partition. We do not have to
|
// recurse on the left partition, since it's sorted (all equal).
|
if (!leftmost && !comp(*(begin - 1), *begin)) {
|
begin = partition_left(begin, end, comp) + 1;
|
continue;
|
}
|
|
// Partition and get results.
|
std::pair<Iter, bool> part_result =
|
Branchless ? partition_right_branchless(begin, end, comp)
|
: partition_right(begin, end, comp);
|
Iter pivot_pos = part_result.first;
|
bool already_partitioned = part_result.second;
|
|
// Check for a highly unbalanced partition.
|
diff_t l_size = pivot_pos - begin;
|
diff_t r_size = end - (pivot_pos + 1);
|
bool highly_unbalanced = l_size < size / 8 || r_size < size / 8;
|
|
// If we got a highly unbalanced partition we shuffle elements to break many patterns.
|
if (highly_unbalanced) {
|
// If we had too many bad partitions, switch to heapsort to guarantee O(n log n).
|
if (--bad_allowed == 0) {
|
std::make_heap(begin, end, comp);
|
std::sort_heap(begin, end, comp);
|
return;
|
}
|
|
if (l_size >= insertion_sort_threshold) {
|
std::iter_swap(begin, begin + l_size / 4);
|
std::iter_swap(pivot_pos - 1, pivot_pos - l_size / 4);
|
|
if (l_size > ninther_threshold) {
|
std::iter_swap(begin + 1, begin + (l_size / 4 + 1));
|
std::iter_swap(begin + 2, begin + (l_size / 4 + 2));
|
std::iter_swap(pivot_pos - 2, pivot_pos - (l_size / 4 + 1));
|
std::iter_swap(pivot_pos - 3, pivot_pos - (l_size / 4 + 2));
|
}
|
}
|
|
if (r_size >= insertion_sort_threshold) {
|
std::iter_swap(pivot_pos + 1, pivot_pos + (1 + r_size / 4));
|
std::iter_swap(end - 1, end - r_size / 4);
|
|
if (r_size > ninther_threshold) {
|
std::iter_swap(pivot_pos + 2, pivot_pos + (2 + r_size / 4));
|
std::iter_swap(pivot_pos + 3, pivot_pos + (3 + r_size / 4));
|
std::iter_swap(end - 2, end - (1 + r_size / 4));
|
std::iter_swap(end - 3, end - (2 + r_size / 4));
|
}
|
}
|
} else {
|
// If we were decently balanced and we tried to sort an already partitioned
|
// sequence try to use insertion sort.
|
if (already_partitioned && partial_insertion_sort(begin, pivot_pos, comp)
|
&& partial_insertion_sort(pivot_pos + 1, end, comp)) return;
|
}
|
|
// Sort the left partition first using recursion and do tail recursion elimination for
|
// the right-hand partition.
|
pdqsort_loop<Iter, Compare, Branchless>(begin, pivot_pos, comp, bad_allowed, leftmost);
|
begin = pivot_pos + 1;
|
leftmost = false;
|
}
|
}
|
}
|
|
|
/*! \brief Generic sort algorithm using random access iterators and a user-defined comparison operator.
|
|
\details @c pdqsort is a fast generic sorting algorithm that is similar in concept to introsort
|
but runs faster on certain patterns. @c pdqsort is in-place, unstable, deterministic, has a worst
|
case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>. Even without patterns, the
|
quicksort has been very efficiently implemented, and @c pdqsort runs 1-5% faster than GCC 6.2's
|
@c std::sort. If the type being sorted is @c std::is_arithmetic and Compare is @c std::less or
|
@c std::greater this function will automatically use @c pdqsort_branchless for far greater speedups.
|
|
\param[in] first Iterator pointer to first element.
|
\param[in] last Iterator pointing to one beyond the end of data.
|
\param[in] comp A binary functor that returns whether the first element passed to it should go before the second in order.
|
\pre [@c first, @c last) is a valid range.
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
|
\post The elements in the range [@c first, @c last) are sorted in ascending order.
|
|
\return @c void.
|
|
\throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
|
(or moves), functors, or any operations on iterators throw.
|
\warning Invalid arguments cause undefined behaviour.
|
\warning Throwing an exception may cause data loss.
|
*/
|
template<class Iter, class Compare>
|
inline void pdqsort(Iter first, Iter last, Compare comp) {
|
if (first == last) return;
|
pdqsort_detail::pdqsort_loop<Iter, Compare,
|
pdqsort_detail::is_default_compare<typename boost::decay<Compare>::type>::value &&
|
boost::is_arithmetic<typename std::iterator_traits<Iter>::value_type>::value>(
|
first, last, comp, pdqsort_detail::log2(last - first));
|
}
|
|
|
/*! \brief Generic sort algorithm using random access iterators and a user-defined comparison operator.
|
|
\details @c pdqsort_branchless is a fast generic sorting algorithm that is similar in concept to
|
introsort but runs faster on certain patterns. @c pdqsort_branchless is in-place, unstable,
|
deterministic, has a worst case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>.
|
Even without patterns, the quicksort has been very efficiently implemented with block based
|
partitioning, and @c pdqsort_branchless runs 80-90% faster than GCC 6.2's @c std::sort when sorting
|
small data such as integers. However, this speedup is gained by totally bypassing the branch
|
predictor, if your comparison operator or iterator contains branches you will most likely see little
|
gain or a small loss in performance.
|
|
\param[in] first Iterator pointer to first element.
|
\param[in] last Iterator pointing to one beyond the end of data.
|
\param[in] comp A binary functor that returns whether the first element passed to it should go before the second in order.
|
\pre [@c first, @c last) is a valid range.
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
|
\post The elements in the range [@c first, @c last) are sorted in ascending order.
|
|
\return @c void.
|
|
\throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
|
(or moves), functors, or any operations on iterators throw.
|
\warning Invalid arguments cause undefined behaviour.
|
\warning Throwing an exception may cause data loss.
|
*/
|
template<class Iter, class Compare>
|
inline void pdqsort_branchless(Iter first, Iter last, Compare comp) {
|
if (first == last) return;
|
pdqsort_detail::pdqsort_loop<Iter, Compare, true>(
|
first, last, comp, pdqsort_detail::log2(last - first));
|
}
|
|
|
/*! \brief Generic sort algorithm using random access iterators.
|
|
\details @c pdqsort is a fast generic sorting algorithm that is similar in concept to introsort
|
but runs faster on certain patterns. @c pdqsort is in-place, unstable, deterministic, has a worst
|
case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>. Even without patterns, the
|
quicksort partitioning has been very efficiently implemented, and @c pdqsort runs 80-90% faster than
|
GCC 6.2's @c std::sort. If the type being sorted is @c std::is_arithmetic this function will
|
automatically use @c pdqsort_branchless.
|
|
\param[in] first Iterator pointer to first element.
|
\param[in] last Iterator pointing to one beyond the end of data.
|
\pre [@c first, @c last) is a valid range.
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
|
\post The elements in the range [@c first, @c last) are sorted in ascending order.
|
|
\return @c void.
|
|
\throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
|
(or moves), functors, or any operations on iterators throw.
|
\warning Invalid arguments cause undefined behaviour.
|
\warning Throwing an exception may cause data loss.
|
*/
|
template<class Iter>
|
inline void pdqsort(Iter first, Iter last) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
pdqsort(first, last, std::less<T>());
|
}
|
|
|
/*! \brief Generic sort algorithm using random access iterators.
|
|
\details @c pdqsort_branchless is a fast generic sorting algorithm that is similar in concept to
|
introsort but runs faster on certain patterns. @c pdqsort_branchless is in-place, unstable,
|
deterministic, has a worst case runtime of <em>O(N * lg(N))</em> and a best case of <em>O(N)</em>.
|
Even without patterns, the quicksort has been very efficiently implemented with block based
|
partitioning, and @c pdqsort_branchless runs 80-90% faster than GCC 6.2's @c std::sort when sorting
|
small data such as integers. However, this speedup is gained by totally bypassing the branch
|
predictor, if your comparison operator or iterator contains branches you will most likely see little
|
gain or a small loss in performance.
|
|
\param[in] first Iterator pointer to first element.
|
\param[in] last Iterator pointing to one beyond the end of data.
|
\pre [@c first, @c last) is a valid range.
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveAssignable">MoveAssignable</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/MoveConstructible">MoveConstructible</a>
|
\pre @c RandomAccessIter @c value_type is <a href="http://en.cppreference.com/w/cpp/concept/LessThanComparable">LessThanComparable</a>
|
\post The elements in the range [@c first, @c last) are sorted in ascending order.
|
|
\return @c void.
|
|
\throws std::exception Propagates exceptions if any of the element comparisons, the element swaps
|
(or moves), functors, or any operations on iterators throw.
|
\warning Invalid arguments cause undefined behaviour.
|
\warning Throwing an exception may cause data loss.
|
*/
|
template<class Iter>
|
inline void pdqsort_branchless(Iter first, Iter last) {
|
typedef typename std::iterator_traits<Iter>::value_type T;
|
pdqsort_branchless(first, last, std::less<T>());
|
}
|
|
}
|
}
|
|
#undef BOOST_PDQSORT_PREFER_MOVE
|
|
#endif
|