liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
 
#ifndef BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP
#define BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP
 
#ifndef BOOST_CONFIG_HPP
#  include <boost/config.hpp>
#endif
 
#if defined(BOOST_HAS_PRAGMA_ONCE)
#  pragma once
#endif
 
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
 
// container
#include <boost/container/container_fwd.hpp>
#include <boost/container/throw_exception.hpp>
// container/detail
#include <boost/container/detail/pool_common.hpp>
#include <boost/container/detail/iterator.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/container/detail/math_functions.hpp>
#include <boost/container/detail/placement_new.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/move/detail/to_raw_pointer.hpp>
#include <boost/container/detail/type_traits.hpp>
// intrusive
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/set.hpp>
#include <boost/intrusive/list.hpp>
#include <boost/intrusive/slist.hpp>
// other
#include <boost/assert.hpp>
#include <boost/core/no_exceptions_support.hpp>
#include <cstddef>
 
namespace boost {
namespace container {
 
namespace adaptive_pool_flag {
 
static const unsigned int none            = 0u;
static const unsigned int align_only      = 1u << 0u;
static const unsigned int size_ordered    = 1u << 1u;
static const unsigned int address_ordered = 1u << 2u;
 
}  //namespace adaptive_pool_flag{
 
namespace dtl {
 
template<class size_type>
struct hdr_offset_holder_t
{
   hdr_offset_holder_t(size_type offset = 0)
      : hdr_offset(offset)
   {}
   size_type hdr_offset;
};
 
template<class SizeType, unsigned int Flags>
struct less_func;
 
template<class SizeType>
struct less_func<SizeType, adaptive_pool_flag::none>
{
   static bool less(SizeType, SizeType, const void *, const void *)
   {  return true;   }
};
 
template<class SizeType>
struct less_func<SizeType, adaptive_pool_flag::size_ordered>
{
   static bool less(SizeType ls, SizeType rs, const void *, const void *)
   {  return ls < rs;   }
};
 
template<class SizeType>
struct less_func<SizeType, adaptive_pool_flag::address_ordered>
{
   static bool less(SizeType, SizeType, const void *la, const void *ra)
   {  return la < ra;   }
};
 
template<class SizeType>
struct less_func<SizeType, adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered>
{
   static bool less(SizeType ls, SizeType rs, const void *la, const void *ra)
   {  return (ls < rs) || ((ls == rs) && (la < ra));  }
};
 
template<class VoidPointer, class SizeType, unsigned OrderFlags>
struct block_container_traits
{
   typedef typename bi::make_set_base_hook
      < bi::void_pointer<VoidPointer>
      , bi::optimize_size<true>
      , bi::link_mode<bi::normal_link> >::type hook_t;
 
   template<class T>
   struct container
   {
      typedef typename bi::make_multiset
         <T, bi::base_hook<hook_t>, bi::size_type<SizeType> >::type  type;
   };
 
   template<class Container>
   static void reinsert_was_used(Container &container, typename Container::reference v, bool)
   {
      typedef typename Container::const_iterator const_block_iterator;
      typedef typename Container::iterator       block_iterator;
      typedef typename Container::value_compare  value_compare;
 
      const block_iterator this_block(Container::s_iterator_to(v));
      const const_block_iterator cendit(container.cend());
      block_iterator next_block(this_block);
 
      if(++next_block != cendit && value_compare()(*next_block, v)){
         const_block_iterator next2_block(next_block);
         //Test if v should be swapped with next (optimization)
         if(++next2_block == cendit || !value_compare()(*next2_block, v)){
            v.swap_nodes(*next_block);
            BOOST_ASSERT(++next_block == this_block);
         }
         else{
            container.erase(this_block);
            container.insert(v);
         }
      }
   }
 
   template<class Container>
   static void insert_was_empty(Container &container, typename Container::value_type &v, bool)
   {
      container.insert(v);
   }
 
   template<class Container>
   static void erase_first(Container &container)
   {
      container.erase(container.cbegin());
   }
 
   template<class Container>
   static void erase_last(Container &container)
   {
      container.erase(--container.cend());
   }
};
 
template<class VoidPointer, class SizeType>
struct block_container_traits<VoidPointer, SizeType, 0u>
{
   typedef typename bi::make_list_base_hook
      < bi::void_pointer<VoidPointer>
      , bi::link_mode<bi::normal_link> >::type hook_t;
 
   template<class T>
   struct container
   {
      typedef typename bi::make_list
         <T, bi::base_hook<hook_t>, bi::size_type<SizeType>, bi::constant_time_size<false> >::type  type;
   };
 
   template<class Container>
   static void reinsert_was_used(Container &container, typename Container::value_type &v, bool is_full)
   {
      if(is_full){
         container.erase(Container::s_iterator_to(v));
         container.push_back(v);
      }
   }
 
   template<class Container>
   static void insert_was_empty(Container &container, typename Container::value_type &v, bool is_full)
   {
      if(is_full){
         container.push_back(v);
      }
      else{
         container.push_front(v);
      }
   }
 
   template<class Container>
   static void erase_first(Container &container)
   {
      container.pop_front();
   }
 
   template<class Container>
   static void erase_last(Container &container)
   {
      container.pop_back();
   }
};
 
/////////////////////////////
//
//    adaptive_pool_types
//
/////////////////////////////
template<class MultiallocationChain, class VoidPointer, class SizeType, unsigned int Flags>
struct adaptive_pool_types
{
   typedef VoidPointer void_pointer;
   static const unsigned ordered = (Flags & (adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered));
   typedef block_container_traits<VoidPointer, SizeType, ordered> block_container_traits_t;
   typedef typename block_container_traits_t::hook_t hook_t;
   typedef hdr_offset_holder_t<SizeType> hdr_offset_holder;
   static const unsigned int order_flags = Flags & (adaptive_pool_flag::size_ordered | adaptive_pool_flag::address_ordered);
   typedef MultiallocationChain free_nodes_t;
 
   struct block_info_t
      : public hdr_offset_holder,
        public hook_t
   {
      //An intrusive list of free node from this block
      free_nodes_t free_nodes;
      friend bool operator <(const block_info_t &l, const block_info_t &r)
      {
         return less_func<SizeType, order_flags>::
            less(l.free_nodes.size(), r.free_nodes.size(), &l , &r);
      }
 
      friend bool operator ==(const block_info_t &l, const block_info_t &r)
      {  return &l == &r;  }
   };
   typedef typename block_container_traits_t:: template container<block_info_t>::type  block_container_t;
};
 
 
/////////////////////////////////////////////
//
//       candidate_power_of_2_ct
//
/////////////////////////////////////////////
template< std::size_t alignment
        , std::size_t real_node_size
        , std::size_t payload_per_allocation
        , std::size_t min_elements_per_block
        , std::size_t hdr_size
        , std::size_t hdr_offset_size
        , std::size_t overhead_percent>
struct candidate_power_of_2_ct_helper
{
   static const std::size_t hdr_subblock_elements_alone = (alignment - hdr_size - payload_per_allocation)/real_node_size;
   static const std::size_t hdr_subblock_elements_first = (alignment - hdr_size - payload_per_allocation)/real_node_size;
   static const std::size_t elements_per_b_subblock_mid = (alignment - hdr_offset_size)/real_node_size;
   static const std::size_t elements_per_b_subblock_end = (alignment - hdr_offset_size - payload_per_allocation)/real_node_size;
   static const std::size_t num_b_subblock =
      hdr_subblock_elements_alone >= min_elements_per_block
         ? 0
         : (   ((hdr_subblock_elements_first + elements_per_b_subblock_end) >= min_elements_per_block)
               ? 1
               : 2 + (min_elements_per_block - hdr_subblock_elements_first - elements_per_b_subblock_end - 1)/elements_per_b_subblock_mid
            )
         ;
 
   static const std::size_t num_b_subblock_mid = (num_b_subblock > 1) ? (num_b_subblock - 1) : 0;
 
   static const std::size_t total_nodes = (num_b_subblock == 0)
                                         ? hdr_subblock_elements_alone
                                         : ( (num_b_subblock == 1)
                                           ? (hdr_subblock_elements_first + elements_per_b_subblock_end)
                                           : (hdr_subblock_elements_first + num_b_subblock_mid*elements_per_b_subblock_mid + elements_per_b_subblock_end)
                                           )
                                         ;
   static const std::size_t total_data = total_nodes*real_node_size;
   static const std::size_t total_size = alignment*(num_b_subblock+1);
   static const bool overhead_satisfied = (total_size - total_data)*100/total_size < overhead_percent;
};
 
template< std::size_t initial_alignment
        , std::size_t real_node_size
        , std::size_t payload_per_allocation
        , std::size_t min_elements_per_block
        , std::size_t hdr_size
        , std::size_t hdr_offset_size
        , std::size_t overhead_percent
        , bool Loop = true>
struct candidate_power_of_2_ct
{
   typedef candidate_power_of_2_ct_helper
        < initial_alignment
        , real_node_size
        , payload_per_allocation
        , min_elements_per_block
        , hdr_size
        , hdr_offset_size
        , overhead_percent> helper_t;
 
   static const std::size_t candidate_power_of_2 = initial_alignment << std::size_t(!helper_t::overhead_satisfied);
 
   typedef typename candidate_power_of_2_ct
      < candidate_power_of_2
      , real_node_size
      , payload_per_allocation
      , min_elements_per_block
      , hdr_size
      , hdr_offset_size
      , overhead_percent
      , !helper_t::overhead_satisfied
      >::type type;
 
   static const std::size_t alignment     = type::alignment;
   static const std::size_t num_subblocks = type::num_subblocks;
   static const std::size_t real_num_node = type::real_num_node;
};
 
template< std::size_t initial_alignment
        , std::size_t real_node_size
        , std::size_t payload_per_allocation
        , std::size_t min_elements_per_block
        , std::size_t hdr_size
        , std::size_t hdr_offset_size
        , std::size_t overhead_percent
        >
struct candidate_power_of_2_ct
      < initial_alignment
      , real_node_size
      , payload_per_allocation
      , min_elements_per_block
      , hdr_size
      , hdr_offset_size
      , overhead_percent
      , false>
{
   typedef candidate_power_of_2_ct
      < initial_alignment
      , real_node_size
      , payload_per_allocation
      , min_elements_per_block
      , hdr_size
      , hdr_offset_size
      , overhead_percent
      , false> type;
 
   typedef candidate_power_of_2_ct_helper
        < initial_alignment
        , real_node_size
        , payload_per_allocation
        , min_elements_per_block
        , hdr_size
        , hdr_offset_size
        , overhead_percent> helper_t;
 
   static const std::size_t alignment = initial_alignment;
   static const std::size_t num_subblocks = helper_t::num_b_subblock+1;
   static const std::size_t real_num_node = helper_t::total_nodes;
};
 
/////////////////////////////////////////////
//
//       candidate_power_of_2_rt
//
/////////////////////////////////////////////
inline void candidate_power_of_2_rt ( std::size_t initial_alignment
                                    , std::size_t real_node_size
                                    , std::size_t payload_per_allocation
                                    , std::size_t min_elements_per_block
                                    , std::size_t hdr_size
                                    , std::size_t hdr_offset_size
                                    , std::size_t overhead_percent
                                    , std::size_t &alignment
                                    , std::size_t &num_subblocks
                                    , std::size_t &real_num_node)
{
   bool overhead_satisfied = false;
   std::size_t num_b_subblock = 0;
   std::size_t total_nodes = 0;
 
   while(!overhead_satisfied)
   {
      std::size_t hdr_subblock_elements_alone = (initial_alignment - hdr_size - payload_per_allocation)/real_node_size;
      std::size_t hdr_subblock_elements_first = (initial_alignment - hdr_size - payload_per_allocation)/real_node_size;
      std::size_t elements_per_b_subblock_mid = (initial_alignment - hdr_offset_size)/real_node_size;
      std::size_t elements_per_b_subblock_end = (initial_alignment - hdr_offset_size - payload_per_allocation)/real_node_size;
 
      num_b_subblock =
         hdr_subblock_elements_alone >= min_elements_per_block
            ? 0
            : (   ((hdr_subblock_elements_first + elements_per_b_subblock_end) >= min_elements_per_block)
                  ? 1
                  : 2 + (min_elements_per_block - hdr_subblock_elements_first - elements_per_b_subblock_end - 1)/elements_per_b_subblock_mid
               )
            ;
 
      std::size_t num_b_subblock_mid = (num_b_subblock > 1) ? (num_b_subblock - 1) : 0;
 
      total_nodes = (num_b_subblock == 0)
                                          ? hdr_subblock_elements_alone
                                          : ( (num_b_subblock == 1)
                                             ? (hdr_subblock_elements_first + elements_per_b_subblock_end)
                                             : (hdr_subblock_elements_first + num_b_subblock_mid*elements_per_b_subblock_mid + elements_per_b_subblock_end)
                                             )
                                          ;
      std::size_t total_data = total_nodes*real_node_size;
      std::size_t total_size = initial_alignment*(num_b_subblock+1);
      overhead_satisfied = (total_size - total_data)*100/total_size < overhead_percent;
      initial_alignment = initial_alignment << std::size_t(!overhead_satisfied);
   }
   alignment     = initial_alignment;
   num_subblocks = num_b_subblock+1;
   real_num_node = total_nodes;
}
 
/////////////////////////////////////////////
//
// private_adaptive_node_pool_impl_common
//
/////////////////////////////////////////////
template< class SegmentManagerBase, unsigned int Flags>
class private_adaptive_node_pool_impl_common
{
   public:
   //!Segment manager typedef
   typedef SegmentManagerBase                                        segment_manager_base_type;
   typedef typename SegmentManagerBase::multiallocation_chain        multiallocation_chain;
   typedef typename SegmentManagerBase::size_type                    size_type;
   //Flags
   //align_only
   static const bool AlignOnly      = (Flags & adaptive_pool_flag::align_only) != 0;
   typedef bool_<AlignOnly>            IsAlignOnly;
   typedef true_                       AlignOnlyTrue;
   typedef false_                      AlignOnlyFalse;
 
   typedef typename SegmentManagerBase::void_pointer void_pointer;
   static const typename SegmentManagerBase::
      size_type PayloadPerAllocation = SegmentManagerBase::PayloadPerAllocation;
 
   typedef typename boost::intrusive::pointer_traits
      <void_pointer>::template rebind_pointer<segment_manager_base_type>::type   segment_mngr_base_ptr_t;
 
   protected:
   typedef adaptive_pool_types
      <multiallocation_chain, void_pointer, size_type, Flags>        adaptive_pool_types_t;
   typedef typename adaptive_pool_types_t::free_nodes_t              free_nodes_t;
   typedef typename adaptive_pool_types_t::block_info_t              block_info_t;
   typedef typename adaptive_pool_types_t::block_container_t         block_container_t;
   typedef typename adaptive_pool_types_t::block_container_traits_t  block_container_traits_t;
   typedef typename block_container_t::iterator                      block_iterator;
   typedef typename block_container_t::const_iterator                const_block_iterator;
   typedef typename adaptive_pool_types_t::hdr_offset_holder         hdr_offset_holder;
   typedef private_adaptive_node_pool_impl_common                    this_type;
 
   static const size_type MaxAlign = alignment_of<void_pointer>::value;
   static const size_type HdrSize  = ((sizeof(block_info_t)-1)/MaxAlign+1)*MaxAlign;
   static const size_type HdrOffsetSize = ((sizeof(hdr_offset_holder)-1)/MaxAlign+1)*MaxAlign;
 
   segment_mngr_base_ptr_t             mp_segment_mngr_base;   //Segment manager
   block_container_t                   m_block_container;      //Intrusive block list
   size_type                           m_totally_free_blocks;  //Free blocks
 
   class block_destroyer;
   friend class block_destroyer;
 
   class block_destroyer
   {
      public:
      block_destroyer(const this_type *impl, multiallocation_chain &chain, const size_type num_subblocks, const size_type real_block_alignment, const size_type real_num_node)
         :  mp_impl(impl), m_chain(chain), m_num_subblocks(num_subblocks), m_real_block_alignment(real_block_alignment), m_real_num_node(real_num_node)
      {}
 
      void operator()(typename block_container_t::pointer to_deallocate)
      {  return this->do_destroy(to_deallocate, IsAlignOnly()); }
 
      private:
      void do_destroy(typename block_container_t::pointer to_deallocate, AlignOnlyTrue)
      {
         BOOST_ASSERT(to_deallocate->free_nodes.size() == m_real_num_node);
         m_chain.push_back(to_deallocate);
      }
 
      void do_destroy(typename block_container_t::pointer to_deallocate, AlignOnlyFalse)
      {
         BOOST_ASSERT(to_deallocate->free_nodes.size() == m_real_num_node);
         BOOST_ASSERT(0 == to_deallocate->hdr_offset);
         hdr_offset_holder *hdr_off_holder =
            mp_impl->priv_first_subblock_from_block(boost::movelib::to_raw_pointer(to_deallocate), m_num_subblocks, m_real_block_alignment);
         m_chain.push_back(hdr_off_holder);
      }
 
      const this_type *mp_impl;
      multiallocation_chain &m_chain;
      const size_type m_num_subblocks;
      const size_type m_real_block_alignment;
      const size_type m_real_num_node;
   };
 
   //This macro will activate invariant checking. Slow, but helpful for debugging the code.
   //#define BOOST_CONTAINER_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
   void priv_invariants(const size_type real_num_node, const size_type num_subblocks, const size_type real_block_alignment) const
   {
      (void)real_num_node; (void)num_subblocks; (void)real_block_alignment;
   #ifdef BOOST_CONTAINER_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
      //Check that the total totally free blocks are correct
      BOOST_ASSERT(m_block_container.size() >= m_totally_free_blocks);
 
      const const_block_iterator itend(m_block_container.cend());
      const const_block_iterator itbeg(m_block_container.cbegin());
 
      {  //Try to do checks in a single iteration
         const_block_iterator it(itbeg);
         size_type total_free_nodes = 0;
         size_type total_free_blocks = 0u;
         for(; it != itend; ++it){
            if(it != itbeg){
               //Check order invariant
               const_block_iterator prev(it);
               --prev;
               BOOST_ASSERT(!(m_block_container.key_comp()(*it, *prev)));
               (void)prev;   (void)it;
            }
 
            //free_nodes invariant
            const size_type free_nodes = it->free_nodes.size();
            BOOST_ASSERT(free_nodes <= real_num_node);
            BOOST_ASSERT(free_nodes != 0);
 
            //Acummulate total_free_nodes and total_free_blocks
            total_free_nodes += free_nodes;
            total_free_blocks += it->free_nodes.size() == real_num_node;
 
            if (!AlignOnly) {
               //Check that header offsets are correct
               hdr_offset_holder *hdr_off_holder = this->priv_first_subblock_from_block(const_cast<block_info_t *>(&*it), num_subblocks, real_block_alignment);
               for (size_type i = 0, max = num_subblocks; i < max; ++i) {
                  const size_type offset = reinterpret_cast<char*>(const_cast<block_info_t *>(&*it)) - reinterpret_cast<char*>(hdr_off_holder);
                  (void)offset;
                  BOOST_ASSERT(hdr_off_holder->hdr_offset == offset);
                  BOOST_ASSERT(0 == (reinterpret_cast<std::size_t>(hdr_off_holder) & (real_block_alignment - 1)));
                  BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (real_block_alignment - 1)));
                  hdr_off_holder = reinterpret_cast<hdr_offset_holder *>(reinterpret_cast<char*>(hdr_off_holder) + real_block_alignment);
               }
            }
         }
         BOOST_ASSERT(total_free_blocks == m_totally_free_blocks);
         BOOST_ASSERT(total_free_nodes >= m_totally_free_blocks*real_num_node);
      }
   #endif
   }
 
   void priv_deallocate_free_blocks( const size_type max_free_blocks, const size_type real_num_node
                                   , const size_type num_subblocks, const size_type real_block_alignment)
   {  //Trampoline function to ease inlining
      if(m_totally_free_blocks > max_free_blocks){
         this->priv_deallocate_free_blocks_impl(max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
      }
   }
 
   hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block, const size_type num_subblocks, const size_type real_block_alignment) const
   {  return this->priv_first_subblock_from_block(block, num_subblocks, real_block_alignment, IsAlignOnly());   }
 
   hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block, const size_type num_subblocks, const size_type real_block_alignment, AlignOnlyFalse) const
   {
      hdr_offset_holder *const hdr_off_holder = reinterpret_cast<hdr_offset_holder*>
            (reinterpret_cast<char*>(block) - (num_subblocks-1)*real_block_alignment);
      BOOST_ASSERT(hdr_off_holder->hdr_offset == size_type(reinterpret_cast<char*>(block) - reinterpret_cast<char*>(hdr_off_holder)));
      BOOST_ASSERT(0 == ((std::size_t)hdr_off_holder & (real_block_alignment - 1)));
      BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (real_block_alignment - 1)));
      return hdr_off_holder;
   }
 
   hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block, const size_type num_subblocks, const size_type real_block_alignment, AlignOnlyTrue) const
   {
      (void)num_subblocks; (void)real_block_alignment;
      return reinterpret_cast<hdr_offset_holder*>(block);
   }
 
   void priv_deallocate_free_blocks_impl( const size_type max_free_blocks, const size_type real_num_node
                                        , const size_type num_subblocks, const size_type real_block_alignment)
   {
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
      //Now check if we've reached the free nodes limit
      //and check if we have free blocks. If so, deallocate as much
      //as we can to stay below the limit
      multiallocation_chain chain;
      {
         if(Flags & adaptive_pool_flag::size_ordered){
            const_block_iterator it = m_block_container.cend();
            --it;
            size_type totally_free_blocks = m_totally_free_blocks;
 
            for( ; totally_free_blocks > max_free_blocks; --totally_free_blocks){
               BOOST_ASSERT(it->free_nodes.size() == real_num_node);
               void *addr = priv_first_subblock_from_block(const_cast<block_info_t*>(&*it), num_subblocks, real_block_alignment);
               --it;
               block_container_traits_t::erase_last(m_block_container);
               chain.push_front(void_pointer(addr));
            }
         }
         else{
            const_block_iterator it = m_block_container.cend();
            size_type totally_free_blocks = m_totally_free_blocks;
 
            while(totally_free_blocks > max_free_blocks){
               --it;
               if(it->free_nodes.size() == real_num_node){
                  void *addr = priv_first_subblock_from_block(const_cast<block_info_t*>(&*it), num_subblocks, real_block_alignment);
                  it = m_block_container.erase(it);
                  chain.push_front(void_pointer(addr));
                  --totally_free_blocks;
               }
            }
         }
         BOOST_ASSERT((m_totally_free_blocks - max_free_blocks) == chain.size());
         m_totally_free_blocks = max_free_blocks;
      }
      this->mp_segment_mngr_base->deallocate_many(chain);
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
   }
 
   void priv_fill_chain_remaining_to_block
      ( multiallocation_chain &chain, size_type target_elem_in_chain, block_info_t &c_info
      , char *mem_address, size_type max_node_in_mem
      , const size_type real_node_size)
   {
      BOOST_ASSERT(chain.size() <= target_elem_in_chain);
 
      //First add all possible nodes to the chain
      const size_type left = target_elem_in_chain - chain.size();
      const size_type add_to_chain = (max_node_in_mem < left) ? max_node_in_mem : left;
      char *free_mem_address = static_cast<char *>(boost::movelib::to_raw_pointer
         (chain.incorporate_after(chain.last(), void_pointer(mem_address), real_node_size, add_to_chain)));
      //Now store remaining nodes in the free list
      if(const size_type free = max_node_in_mem - add_to_chain){
         free_nodes_t & free_nodes = c_info.free_nodes;
         free_nodes.incorporate_after(free_nodes.last(), void_pointer(free_mem_address), real_node_size, free);
      }
   }
 
   //!Allocates a several blocks of nodes. Can throw
   void priv_append_from_new_blocks( size_type min_elements, multiallocation_chain &chain
                                   , const size_type max_free_blocks
                                   , const size_type real_block_alignment, const size_type real_node_size
                                   , const size_type real_num_node, const size_type num_subblocks
                                   , AlignOnlyTrue)
   {
      (void)num_subblocks;
      BOOST_ASSERT(m_block_container.empty());
      BOOST_ASSERT(min_elements > 0);
      const size_type n = (min_elements - 1)/real_num_node + 1;
      const size_type real_block_size = real_block_alignment - PayloadPerAllocation;
      const size_type target_elem_in_chain = chain.size() + min_elements;
      for(size_type i = 0; i != n; ++i){
         //We allocate a new NodeBlock and put it the last
         //element of the tree
         char *mem_address = static_cast<char*>
            (mp_segment_mngr_base->allocate_aligned(real_block_size, real_block_alignment));
         if(!mem_address){
            //In case of error, free memory deallocating all nodes (the new ones allocated
            //in this function plus previously stored nodes in chain).
            this->priv_deallocate_nodes(chain, max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
            throw_bad_alloc();
         }
         block_info_t &c_info = *new(mem_address, boost_container_new_t())block_info_t();
         mem_address += HdrSize;
         this->priv_fill_chain_remaining_to_block(chain, target_elem_in_chain, c_info, mem_address, real_num_node, real_node_size);
         const size_type free_nodes = c_info.free_nodes.size();
         if(free_nodes){
            const bool is_full = free_nodes == real_num_node;
            BOOST_ASSERT(free_nodes < real_num_node);
            m_totally_free_blocks += static_cast<size_type>(is_full);
            block_container_traits_t::insert_was_empty(m_block_container, c_info, is_full);
         }
      }
   }
 
   void priv_append_from_new_blocks( size_type min_elements, multiallocation_chain &chain
                                   , const size_type max_free_blocks
                                   , const size_type real_block_alignment, const size_type real_node_size
                                   , const size_type real_num_node, const size_type num_subblocks
                                   , AlignOnlyFalse)
   {
      BOOST_ASSERT(m_block_container.empty());
      BOOST_ASSERT(min_elements > 0);
      const size_type n = (min_elements - 1)/real_num_node + 1;
      const size_type real_block_size = real_block_alignment*num_subblocks - PayloadPerAllocation;
      const size_type elements_per_subblock_mid = (real_block_alignment - HdrOffsetSize)/real_node_size;
      const size_type elements_per_subblock_end = (real_block_alignment - HdrOffsetSize - PayloadPerAllocation) / real_node_size;
      const size_type hdr_subblock_elements = (real_block_alignment - HdrSize - PayloadPerAllocation)/real_node_size;
      const size_type target_elem_in_chain = chain.size() + min_elements;
 
      for(size_type i = 0; i != n; ++i){
         //We allocate a new NodeBlock and put it the last
         //element of the tree
         char *mem_address = static_cast<char*>
            (mp_segment_mngr_base->allocate_aligned(real_block_size, real_block_alignment));
         if(!mem_address){
            //In case of error, free memory deallocating all nodes (the new ones allocated
            //in this function plus previously stored nodes in chain).
            this->priv_deallocate_nodes(chain, max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
            throw_bad_alloc();
         }
         //First initialize header information on the last subblock
         char *hdr_addr = mem_address + real_block_alignment*(num_subblocks-1);
         block_info_t &c_info = *new(hdr_addr, boost_container_new_t())block_info_t();
         //Some structural checks
         BOOST_ASSERT(static_cast<void*>(&static_cast<hdr_offset_holder&>(c_info).hdr_offset) ==
                      static_cast<void*>(&c_info));   (void)c_info;
         for( size_type subblock = 0, maxsubblock = num_subblocks - 1
            ; subblock < maxsubblock
            ; ++subblock, mem_address += real_block_alignment){
            //Initialize header offset mark
            new(mem_address, boost_container_new_t()) hdr_offset_holder(size_type(hdr_addr - mem_address));
            const size_type elements_per_subblock = (subblock != (maxsubblock - 1)) ? elements_per_subblock_mid : elements_per_subblock_end;
            this->priv_fill_chain_remaining_to_block
               (chain, target_elem_in_chain, c_info, mem_address + HdrOffsetSize, elements_per_subblock, real_node_size);
         }
         this->priv_fill_chain_remaining_to_block
            (chain, target_elem_in_chain, c_info, hdr_addr + HdrSize, hdr_subblock_elements, real_node_size);
         m_totally_free_blocks += static_cast<size_type>(c_info.free_nodes.size() == real_num_node);
         if (c_info.free_nodes.size())
            m_block_container.push_front(c_info);
      }
   }
 
   //!Allocates array of count elements. Can throw
   void *priv_allocate_node( const size_type max_free_blocks, const size_type real_block_alignment, const size_type real_node_size
                           , const size_type real_num_node, const size_type num_subblocks)
   {
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
      //If there are no free nodes we allocate a new block
      if(!m_block_container.empty()){
         //We take the first free node the multiset can't be empty
         free_nodes_t &free_nodes = m_block_container.begin()->free_nodes;
         BOOST_ASSERT(!free_nodes.empty());
         const size_type free_nodes_count = free_nodes.size();
         void *first_node = boost::movelib::to_raw_pointer(free_nodes.pop_front());
         if(free_nodes.empty()){
            block_container_traits_t::erase_first(m_block_container);
         }
         m_totally_free_blocks -= static_cast<size_type>(free_nodes_count == real_num_node);
         this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
         return first_node;
      }
      else{
         multiallocation_chain chain;
         this->priv_append_from_new_blocks
            (1, chain, max_free_blocks, real_block_alignment, real_node_size, real_num_node, num_subblocks, IsAlignOnly());
         void *node = boost::movelib::to_raw_pointer(chain.pop_front());
         this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
         return node;
      }
   }
 
   void priv_allocate_nodes( const size_type n, multiallocation_chain &chain
                           , const size_type max_free_blocks, const size_type real_block_alignment, const size_type real_node_size
                           , const size_type real_num_node, const size_type num_subblocks)
   {
      size_type i = 0;
      BOOST_TRY{
         this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
         while(i != n){
            //If there are no free nodes we allocate all needed blocks
            if (m_block_container.empty()){
               this->priv_append_from_new_blocks
                  (n - i, chain, max_free_blocks, real_block_alignment, real_node_size, real_num_node, num_subblocks, IsAlignOnly());
               BOOST_ASSERT(m_block_container.empty() || (++m_block_container.cbegin() == m_block_container.cend()));
               BOOST_ASSERT(chain.size() == n);
               break;
            }
            free_nodes_t &free_nodes = m_block_container.begin()->free_nodes;
            const size_type free_nodes_count_before = free_nodes.size();
            m_totally_free_blocks -= static_cast<size_type>(free_nodes_count_before == real_num_node);
            const size_type num_left  = n-i;
            const size_type num_elems = (num_left < free_nodes_count_before) ? num_left : free_nodes_count_before;
            typedef typename free_nodes_t::iterator free_nodes_iterator;
 
            if(num_left < free_nodes_count_before){
               const free_nodes_iterator it_bbeg(free_nodes.before_begin());
               free_nodes_iterator it_bend(it_bbeg);
               for(size_type j = 0; j != num_elems; ++j){
                  ++it_bend;
               }
               free_nodes_iterator it_end = it_bend; ++it_end;
               free_nodes_iterator it_beg = it_bbeg; ++it_beg;
               free_nodes.erase_after(it_bbeg, it_end, num_elems);
               chain.incorporate_after(chain.last(), &*it_beg, &*it_bend, num_elems);
               //chain.splice_after(chain.last(), free_nodes, it_bbeg, it_bend, num_elems);
               BOOST_ASSERT(!free_nodes.empty());
            }
            else{
               const free_nodes_iterator it_beg(free_nodes.begin()), it_bend(free_nodes.last());
               free_nodes.clear();
               chain.incorporate_after(chain.last(), &*it_beg, &*it_bend, num_elems);
               block_container_traits_t::erase_first(m_block_container);
            }
            i += num_elems;
         }
      }
      BOOST_CATCH(...){
         this->priv_deallocate_nodes(chain, max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
         this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
         BOOST_RETHROW
      }
      BOOST_CATCH_END
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
   }
 
   //!Deallocates an array pointed by ptr. Never throws
   void priv_deallocate_node( void *pElem
                            , const size_type max_free_blocks, const size_type real_num_node
                            , const size_type num_subblocks, const size_type real_block_alignment)
   {
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
      block_info_t &block_info = *this->priv_block_from_node(pElem, real_block_alignment);
      const size_type prev_free_nodes = block_info.free_nodes.size();
      BOOST_ASSERT(block_info.free_nodes.size() < real_num_node);
 
      //We put the node at the beginning of the free node list
      block_info.free_nodes.push_back(void_pointer(pElem));
 
      //The loop reinserts all blocks except the last one
      this->priv_reinsert_block(block_info, prev_free_nodes == 0, real_num_node);
      this->priv_deallocate_free_blocks(max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
   }
 
   void priv_deallocate_nodes( multiallocation_chain &nodes
                             , const size_type max_free_blocks, const size_type real_num_node
                             , const size_type num_subblocks, const size_type real_block_alignment)
   {
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
      //To take advantage of node locality, wait until two
      //nodes belong to different blocks. Only then reinsert
      //the block of the first node in the block tree.
      //Cache of the previous block
      block_info_t *prev_block_info = 0;
 
      //If block was empty before this call, it's not already
      //inserted in the block tree.
      bool prev_block_was_empty     = false;
      typedef typename free_nodes_t::iterator free_nodes_iterator;
      {
         const free_nodes_iterator itbb(nodes.before_begin()), ite(nodes.end());
         free_nodes_iterator itf(nodes.begin()), itbf(itbb);
         size_type splice_node_count = size_type(-1);
         while(itf != ite){
            void *pElem = boost::movelib::to_raw_pointer(boost::movelib::iterator_to_raw_pointer(itf));
            block_info_t &block_info = *this->priv_block_from_node(pElem, real_block_alignment);
            BOOST_ASSERT(block_info.free_nodes.size() < real_num_node);
            ++splice_node_count;
 
            //If block change is detected calculate the cached block position in the tree
            if(&block_info != prev_block_info){
               if(prev_block_info){ //Make sure we skip the initial "dummy" cache
                  free_nodes_iterator it(itbb); ++it;
                  nodes.erase_after(itbb, itf, splice_node_count);
                  prev_block_info->free_nodes.incorporate_after(prev_block_info->free_nodes.last(), &*it, &*itbf, splice_node_count);
                  this->priv_reinsert_block(*prev_block_info, prev_block_was_empty, real_num_node);
                  splice_node_count = 0;
               }
               //Update cache with new data
               prev_block_was_empty = block_info.free_nodes.empty();
               prev_block_info = &block_info;
            }
            itbf = itf;
            ++itf;
         }
      }
      if(prev_block_info){
         //The loop reinserts all blocks except the last one
         const free_nodes_iterator itfirst(nodes.begin()), itlast(nodes.last());
         const size_type splice_node_count = nodes.size();
         nodes.clear();
         prev_block_info->free_nodes.incorporate_after(prev_block_info->free_nodes.last(), &*itfirst, &*itlast, splice_node_count);
         this->priv_reinsert_block(*prev_block_info, prev_block_was_empty, real_num_node);
         this->priv_deallocate_free_blocks(max_free_blocks, real_num_node, num_subblocks, real_block_alignment);
      }
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
   }
 
   void priv_reinsert_block(block_info_t &prev_block_info, const bool prev_block_was_empty, const size_type real_num_node)
   {
      //Cache the free nodes from the block
      const size_type this_block_free_nodes = prev_block_info.free_nodes.size();
      const bool is_full = this_block_free_nodes == real_num_node;
 
      //Update free block count
      m_totally_free_blocks += static_cast<size_type>(is_full);
      if(prev_block_was_empty){
         block_container_traits_t::insert_was_empty(m_block_container, prev_block_info, is_full);
      }
      else{
         block_container_traits_t::reinsert_was_used(m_block_container, prev_block_info, is_full);
      }
   }
 
   block_info_t *priv_block_from_node(void *node, const size_type real_block_alignment, AlignOnlyFalse) const
   {
      hdr_offset_holder *hdr_off_holder =
         reinterpret_cast<hdr_offset_holder*>((std::size_t)node & size_type(~(real_block_alignment - 1)));
      BOOST_ASSERT(0 == ((std::size_t)hdr_off_holder & (real_block_alignment - 1)));
      BOOST_ASSERT(0 == (hdr_off_holder->hdr_offset & (real_block_alignment - 1)));
      block_info_t *block = reinterpret_cast<block_info_t *>
         (reinterpret_cast<char*>(hdr_off_holder) + hdr_off_holder->hdr_offset);
      BOOST_ASSERT(block->hdr_offset == 0);
      return block;
   }
 
   block_info_t *priv_block_from_node(void *node, const size_type real_block_alignment, AlignOnlyTrue) const
   {
      return (block_info_t *)((std::size_t)node & std::size_t(~(real_block_alignment - 1)));
   }
 
   block_info_t *priv_block_from_node(void *node, const size_type real_block_alignment) const
   {  return this->priv_block_from_node(node, real_block_alignment, IsAlignOnly());   }
 
   //!Deallocates all used memory. Never throws
   void priv_clear(const size_type num_subblocks, const size_type real_block_alignment, const size_type real_num_node)
   {
      #ifndef NDEBUG
      block_iterator it    = m_block_container.begin();
      block_iterator itend = m_block_container.end();
      size_type n_free_nodes = 0;
      for(; it != itend; ++it){
         //Check for memory leak
         BOOST_ASSERT(it->free_nodes.size() == real_num_node);
         ++n_free_nodes;
      }
      BOOST_ASSERT(n_free_nodes == m_totally_free_blocks);
      #endif
      //Check for memory leaks
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
      multiallocation_chain chain;
      m_block_container.clear_and_dispose(block_destroyer(this, chain, num_subblocks, real_block_alignment, real_num_node));
      this->mp_segment_mngr_base->deallocate_many(chain);
      m_totally_free_blocks = 0;
      this->priv_invariants(real_num_node, num_subblocks, real_block_alignment);
   }
 
   public:
   private_adaptive_node_pool_impl_common(segment_manager_base_type *segment_mngr_base)
      //General purpose allocator
   :  mp_segment_mngr_base(segment_mngr_base)
   ,  m_block_container()
   ,  m_totally_free_blocks(0)
   {}
 
   size_type num_free_nodes()
   {
      typedef typename block_container_t::const_iterator citerator;
      size_type count = 0;
      citerator it (m_block_container.begin()), itend(m_block_container.end());
      for(; it != itend; ++it){
         count += it->free_nodes.size();
      }
      return count;
   }
 
   void swap(private_adaptive_node_pool_impl_common &other)
   {
      std::swap(mp_segment_mngr_base, other.mp_segment_mngr_base);
      std::swap(m_totally_free_blocks, other.m_totally_free_blocks);
      m_block_container.swap(other.m_block_container);
   }
 
   //!Returns the segment manager. Never throws
   segment_manager_base_type* get_segment_manager_base()const
   {  return boost::movelib::to_raw_pointer(mp_segment_mngr_base);  }
};
 
template< class SizeType
        , std::size_t HdrSize
        , std::size_t PayloadPerAllocation
        , std::size_t RealNodeSize
        , std::size_t NodesPerBlock
        , std::size_t HdrOffsetSize
        , std::size_t OverheadPercent
        , bool AlignOnly>
struct calculate_alignment_ct
{
   static const std::size_t alignment     = upper_power_of_2_ct<SizeType, HdrSize + RealNodeSize*NodesPerBlock>::value;
   static const std::size_t num_subblocks = 0;
   static const std::size_t real_num_node = (alignment - PayloadPerAllocation - HdrSize)/RealNodeSize;
};
 
template< class SizeType
        , std::size_t HdrSize
        , std::size_t PayloadPerAllocation
        , std::size_t RealNodeSize
        , std::size_t NodesPerBlock
        , std::size_t HdrOffsetSize
        , std::size_t OverheadPercent>
struct calculate_alignment_ct
   < SizeType
   , HdrSize
   , PayloadPerAllocation
   , RealNodeSize
   , NodesPerBlock
   , HdrOffsetSize
   , OverheadPercent
   , false>
{
   typedef typename candidate_power_of_2_ct
      < upper_power_of_2_ct<SizeType, HdrSize + PayloadPerAllocation + RealNodeSize>::value
      , RealNodeSize
      , PayloadPerAllocation
      , NodesPerBlock
      , HdrSize
      , HdrOffsetSize
      , OverheadPercent
      >::type type;
 
   static const std::size_t alignment     = type::alignment;
   static const std::size_t num_subblocks = type::num_subblocks;
   static const std::size_t real_num_node = type::real_num_node;
};
 
 
/////////////////////////////////////////////
//
//    private_adaptive_node_pool_impl_ct
//
/////////////////////////////////////////////
template< class SegmentManagerBase
        , std::size_t MaxFreeBlocks
        , std::size_t NodeSize
        , std::size_t NodesPerBlock
        , std::size_t OverheadPercent
        , unsigned int Flags>
class private_adaptive_node_pool_impl_ct
   : public private_adaptive_node_pool_impl_common<SegmentManagerBase, Flags>
{
   typedef private_adaptive_node_pool_impl_common<SegmentManagerBase, Flags> base_t;
 
   //Non-copyable
   private_adaptive_node_pool_impl_ct();
   private_adaptive_node_pool_impl_ct(const private_adaptive_node_pool_impl_ct &);
   private_adaptive_node_pool_impl_ct &operator=(const private_adaptive_node_pool_impl_ct &);
 
   public:
   typedef typename base_t::void_pointer              void_pointer;
   typedef typename base_t::size_type                 size_type;
   typedef typename base_t::multiallocation_chain     multiallocation_chain;
   typedef typename base_t::segment_manager_base_type segment_manager_base_type;
 
   static const typename base_t::size_type PayloadPerAllocation = base_t::PayloadPerAllocation;
 
   //align_only
   static const bool AlignOnly      = base_t::AlignOnly;
 
   private:
   static const size_type MaxAlign = base_t::MaxAlign;
   static const size_type HdrSize  = base_t::HdrSize;
   static const size_type HdrOffsetSize = base_t::HdrOffsetSize;
 
   static const size_type RealNodeSize = lcm_ct<NodeSize, alignment_of<void_pointer>::value>::value;
 
   typedef calculate_alignment_ct
      < size_type, HdrSize, PayloadPerAllocation
      , RealNodeSize, NodesPerBlock, HdrOffsetSize, OverheadPercent, AlignOnly> data_t;
 
   //Round the size to a power of two value.
   //This is the total memory size (including payload) that we want to
   //allocate from the general-purpose allocator
   static const size_type NumSubBlocks       = data_t::num_subblocks;
   static const size_type RealNumNode        = data_t::real_num_node;
   static const size_type RealBlockAlignment = data_t::alignment;
 
   public:
 
   //!Constructor from a segment manager. Never throws
   private_adaptive_node_pool_impl_ct(typename base_t::segment_manager_base_type *segment_mngr_base)
      //General purpose allocator
   :  base_t(segment_mngr_base)
   {}
 
   //!Destructor. Deallocates all allocated blocks. Never throws
   ~private_adaptive_node_pool_impl_ct()
   {  this->priv_clear(NumSubBlocks, data_t::alignment, RealNumNode);  }
 
   size_type get_real_num_node() const
   {  return RealNumNode; }
 
   //!Allocates array of count elements. Can throw
   void *allocate_node()
   {
      return this->priv_allocate_node
         (MaxFreeBlocks, data_t::alignment, RealNodeSize, RealNumNode, NumSubBlocks);
   }
 
   //!Allocates n nodes.
   //!Can throw
   void allocate_nodes(const size_type n, multiallocation_chain &chain)
   {
      this->priv_allocate_nodes
         (n, chain, MaxFreeBlocks, data_t::alignment, RealNodeSize, RealNumNode, NumSubBlocks);
   }
 
   //!Deallocates an array pointed by ptr. Never throws
   void deallocate_node(void *pElem)
   {
      this->priv_deallocate_node(pElem, MaxFreeBlocks, RealNumNode, NumSubBlocks, RealBlockAlignment);
   }
 
   //!Deallocates a linked list of nodes. Never throws
   void deallocate_nodes(multiallocation_chain &nodes)
   {
      this->priv_deallocate_nodes(nodes, MaxFreeBlocks, RealNumNode, NumSubBlocks, data_t::alignment);
   }
 
   void deallocate_free_blocks()
   {  this->priv_deallocate_free_blocks(0, RealNumNode, NumSubBlocks, data_t::alignment);  }
 
   //Deprecated, use deallocate_free_blocks
   void deallocate_free_chunks()
   {  this->priv_deallocate_free_blocks(0, RealNumNode, NumSubBlocks, data_t::alignment);   }
};
 
/////////////////////////////////////////////
//
//    private_adaptive_node_pool_impl_rt
//
/////////////////////////////////////////////
template<class SizeType>
struct private_adaptive_node_pool_impl_rt_data
{
   typedef SizeType size_type;
 
   private_adaptive_node_pool_impl_rt_data(size_type max_free_blocks, size_type real_node_size)
      : m_max_free_blocks(max_free_blocks), m_real_node_size(real_node_size)
      , m_real_block_alignment(), m_num_subblocks(), m_real_num_node()
   {}
 
   const size_type m_max_free_blocks;
   const size_type m_real_node_size;
   //Round the size to a power of two value.
   //This is the total memory size (including payload) that we want to
   //allocate from the general-purpose allocator
   size_type m_real_block_alignment;
   size_type m_num_subblocks;
   //This is the real number of nodes per block
   size_type m_real_num_node;
};
 
 
template<class SegmentManagerBase, unsigned int Flags>
class private_adaptive_node_pool_impl_rt
   : private private_adaptive_node_pool_impl_rt_data<typename SegmentManagerBase::size_type>
   , public  private_adaptive_node_pool_impl_common<SegmentManagerBase, Flags> 
{
   typedef private_adaptive_node_pool_impl_common<SegmentManagerBase, Flags> impl_t;
   typedef private_adaptive_node_pool_impl_rt_data<typename SegmentManagerBase::size_type> data_t;
 
   //Non-copyable
   private_adaptive_node_pool_impl_rt();
   private_adaptive_node_pool_impl_rt(const private_adaptive_node_pool_impl_rt &);
   private_adaptive_node_pool_impl_rt &operator=(const private_adaptive_node_pool_impl_rt &);
 
   protected:
 
   typedef typename impl_t::void_pointer           void_pointer;
   typedef typename impl_t::size_type              size_type;
   typedef typename impl_t::multiallocation_chain  multiallocation_chain;
 
   static const typename impl_t::size_type PayloadPerAllocation = impl_t::PayloadPerAllocation;
 
   //Flags
   //align_only
   static const bool AlignOnly      = impl_t::AlignOnly;
 
   static const size_type HdrSize  = impl_t::HdrSize;
   static const size_type HdrOffsetSize = impl_t::HdrOffsetSize;
 
   public:
 
   //!Segment manager typedef
   typedef SegmentManagerBase                 segment_manager_base_type;
 
   //!Constructor from a segment manager. Never throws
   private_adaptive_node_pool_impl_rt
      ( segment_manager_base_type *segment_mngr_base
      , size_type node_size
      , size_type nodes_per_block
      , size_type max_free_blocks
      , unsigned char overhead_percent
      )
   :  data_t(max_free_blocks, lcm(node_size, size_type(alignment_of<void_pointer>::value)))
   ,  impl_t(segment_mngr_base)
   {
      if(AlignOnly){
         this->m_real_block_alignment = upper_power_of_2(HdrSize + this->m_real_node_size*nodes_per_block);
         this->m_real_num_node = (this->m_real_block_alignment - PayloadPerAllocation - HdrSize)/this->m_real_node_size;
      }
      else{
         candidate_power_of_2_rt ( upper_power_of_2(HdrSize + PayloadPerAllocation + this->m_real_node_size)
                                 , this->m_real_node_size
                                 , PayloadPerAllocation
                                 , nodes_per_block
                                 , HdrSize
                                 , HdrOffsetSize
                                 , overhead_percent
                                 , this->m_real_block_alignment
                                 , this->m_num_subblocks
                                 , this->m_real_num_node);
      }
   }
 
   //!Destructor. Deallocates all allocated blocks. Never throws
   ~private_adaptive_node_pool_impl_rt()
   {  this->priv_clear(this->m_num_subblocks, this->m_real_block_alignment, this->m_real_num_node);  }
 
   size_type get_real_num_node() const
   {  return this->m_real_num_node; }
 
   //!Allocates array of count elements. Can throw
   void *allocate_node()
   {
      return this->priv_allocate_node
         (this->m_max_free_blocks, this->m_real_block_alignment, this->m_real_node_size, this->m_real_num_node, this->m_num_subblocks);
   }
 
   //!Allocates n nodes.
   //!Can throw
   void allocate_nodes(const size_type n, multiallocation_chain &chain)
   {
 
      this->priv_allocate_nodes
         (n, chain, this->m_max_free_blocks, this->m_real_block_alignment, this->m_real_node_size, this->m_real_num_node, this->m_num_subblocks);
   }
 
   //!Deallocates an array pointed by ptr. Never throws
   void deallocate_node(void *pElem)
   {
      this->priv_deallocate_node(pElem, this->m_max_free_blocks, this->m_real_num_node, this->m_num_subblocks, this->m_real_block_alignment);
   }
 
   //!Deallocates a linked list of nodes. Never throws
   void deallocate_nodes(multiallocation_chain &nodes)
   {
      this->priv_deallocate_nodes(nodes, this->m_max_free_blocks, this->m_real_num_node, this->m_num_subblocks, this->m_real_block_alignment);
   }
 
   void deallocate_free_blocks()
   {  this->priv_deallocate_free_blocks(0, this->m_real_num_node, this->m_num_subblocks, this->m_real_block_alignment);  }
 
   //Deprecated, use deallocate_free_blocks
   void deallocate_free_chunks()
   {  this->priv_deallocate_free_blocks(0, this->m_real_num_node, this->m_num_subblocks, this->m_real_block_alignment);   }
};
 
}  //namespace dtl {
}  //namespace container {
}  //namespace boost {
 
#include <boost/container/detail/config_end.hpp>
 
#endif   //#ifndef BOOST_CONTAINER_DETAIL_ADAPTIVE_NODE_POOL_IMPL_HPP