//=======================================================================
|
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
|
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
|
//
|
// Distributed under the Boost Software License, Version 1.0. (See
|
// accompanying file LICENSE_1_0.txt or copy at
|
// http://www.boost.org/LICENSE_1_0.txt)
|
//=======================================================================
|
|
#ifndef BOOST_FILTERED_GRAPH_HPP
|
#define BOOST_FILTERED_GRAPH_HPP
|
|
#include <boost/graph/graph_traits.hpp>
|
#include <boost/graph/properties.hpp>
|
#include <boost/graph/adjacency_iterator.hpp>
|
#include <boost/graph/detail/set_adaptor.hpp>
|
#include <boost/iterator/filter_iterator.hpp>
|
|
namespace boost
|
{
|
|
//=========================================================================
|
// Some predicate classes.
|
|
struct keep_all
|
{
|
template < typename T > bool operator()(const T&) const { return true; }
|
};
|
|
// Keep residual edges (used in maximum-flow algorithms).
|
template < typename ResidualCapacityEdgeMap > struct is_residual_edge
|
{
|
is_residual_edge() {}
|
is_residual_edge(ResidualCapacityEdgeMap rcap) : m_rcap(rcap) {}
|
template < typename Edge > bool operator()(const Edge& e) const
|
{
|
return 0 < get(m_rcap, e);
|
}
|
ResidualCapacityEdgeMap m_rcap;
|
};
|
|
template < typename Set > struct is_in_subset
|
{
|
is_in_subset() : m_s(0) {}
|
is_in_subset(const Set& s) : m_s(&s) {}
|
|
template < typename Elt > bool operator()(const Elt& x) const
|
{
|
return set_contains(*m_s, x);
|
}
|
const Set* m_s;
|
};
|
|
template < typename Set > struct is_not_in_subset
|
{
|
is_not_in_subset() : m_s(0) {}
|
is_not_in_subset(const Set& s) : m_s(&s) {}
|
|
template < typename Elt > bool operator()(const Elt& x) const
|
{
|
return !set_contains(*m_s, x);
|
}
|
const Set* m_s;
|
};
|
|
namespace detail
|
{
|
|
template < typename EdgePredicate, typename VertexPredicate,
|
typename Graph >
|
struct out_edge_predicate
|
{
|
out_edge_predicate() {}
|
out_edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g)
|
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g)
|
{
|
}
|
|
template < typename Edge > bool operator()(const Edge& e) const
|
{
|
return m_edge_pred(e) && m_vertex_pred(target(e, *m_g));
|
}
|
EdgePredicate m_edge_pred;
|
VertexPredicate m_vertex_pred;
|
const Graph* m_g;
|
};
|
|
template < typename EdgePredicate, typename VertexPredicate,
|
typename Graph >
|
struct in_edge_predicate
|
{
|
in_edge_predicate() {}
|
in_edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g)
|
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g)
|
{
|
}
|
|
template < typename Edge > bool operator()(const Edge& e) const
|
{
|
return m_edge_pred(e) && m_vertex_pred(source(e, *m_g));
|
}
|
EdgePredicate m_edge_pred;
|
VertexPredicate m_vertex_pred;
|
const Graph* m_g;
|
};
|
|
template < typename EdgePredicate, typename VertexPredicate,
|
typename Graph >
|
struct edge_predicate
|
{
|
edge_predicate() {}
|
edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g)
|
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g)
|
{
|
}
|
|
template < typename Edge > bool operator()(const Edge& e) const
|
{
|
return m_edge_pred(e) && m_vertex_pred(source(e, *m_g))
|
&& m_vertex_pred(target(e, *m_g));
|
}
|
EdgePredicate m_edge_pred;
|
VertexPredicate m_vertex_pred;
|
const Graph* m_g;
|
};
|
|
} // namespace detail
|
|
//===========================================================================
|
// Filtered Graph
|
|
struct filtered_graph_tag
|
{
|
};
|
|
// This base class is a stupid hack to change overload resolution
|
// rules for the source and target functions so that they are a
|
// worse match than the source and target functions defined for
|
// pairs in graph_traits.hpp. I feel dirty. -JGS
|
template < class G > struct filtered_graph_base
|
{
|
typedef graph_traits< G > Traits;
|
typedef typename Traits::vertex_descriptor vertex_descriptor;
|
typedef typename Traits::edge_descriptor edge_descriptor;
|
filtered_graph_base(const G& g) : m_g(g) {}
|
// protected:
|
const G& m_g;
|
};
|
|
template < typename Graph, typename EdgePredicate,
|
typename VertexPredicate = keep_all >
|
class filtered_graph : public filtered_graph_base< Graph >
|
{
|
typedef filtered_graph_base< Graph > Base;
|
typedef graph_traits< Graph > Traits;
|
typedef filtered_graph self;
|
|
public:
|
typedef Graph graph_type;
|
typedef detail::out_edge_predicate< EdgePredicate, VertexPredicate, self >
|
OutEdgePred;
|
typedef detail::in_edge_predicate< EdgePredicate, VertexPredicate, self >
|
InEdgePred;
|
typedef detail::edge_predicate< EdgePredicate, VertexPredicate, self >
|
EdgePred;
|
|
// Constructors
|
filtered_graph(const Graph& g, EdgePredicate ep) : Base(g), m_edge_pred(ep)
|
{
|
}
|
|
filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp)
|
: Base(g), m_edge_pred(ep), m_vertex_pred(vp)
|
{
|
}
|
|
// Graph requirements
|
typedef typename Traits::vertex_descriptor vertex_descriptor;
|
typedef typename Traits::edge_descriptor edge_descriptor;
|
typedef typename Traits::directed_category directed_category;
|
typedef typename Traits::edge_parallel_category edge_parallel_category;
|
typedef typename Traits::traversal_category traversal_category;
|
|
// IncidenceGraph requirements
|
typedef filter_iterator< OutEdgePred, typename Traits::out_edge_iterator >
|
out_edge_iterator;
|
|
typedef typename Traits::degree_size_type degree_size_type;
|
|
// AdjacencyGraph requirements
|
typedef typename adjacency_iterator_generator< self, vertex_descriptor,
|
out_edge_iterator >::type adjacency_iterator;
|
|
// BidirectionalGraph requirements
|
typedef filter_iterator< InEdgePred, typename Traits::in_edge_iterator >
|
in_edge_iterator;
|
|
// VertexListGraph requirements
|
typedef filter_iterator< VertexPredicate, typename Traits::vertex_iterator >
|
vertex_iterator;
|
typedef typename Traits::vertices_size_type vertices_size_type;
|
|
// EdgeListGraph requirements
|
typedef filter_iterator< EdgePred, typename Traits::edge_iterator >
|
edge_iterator;
|
typedef typename Traits::edges_size_type edges_size_type;
|
|
typedef filtered_graph_tag graph_tag;
|
|
// Bundled properties support
|
template < typename Descriptor >
|
typename graph::detail::bundled_result< Graph, Descriptor >::type&
|
operator[](Descriptor x)
|
{
|
return const_cast< Graph& >(this->m_g)[x];
|
}
|
|
template < typename Descriptor >
|
typename graph::detail::bundled_result< Graph, Descriptor >::type const&
|
operator[](Descriptor x) const
|
{
|
return this->m_g[x];
|
}
|
|
static vertex_descriptor null_vertex() { return Traits::null_vertex(); }
|
|
// private:
|
EdgePredicate m_edge_pred;
|
VertexPredicate m_vertex_pred;
|
};
|
|
// Do not instantiate these unless needed
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct vertex_property_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: vertex_property_type< Graph >
|
{
|
};
|
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct edge_property_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: edge_property_type< Graph >
|
{
|
};
|
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct graph_property_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: graph_property_type< Graph >
|
{
|
};
|
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct vertex_bundle_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: vertex_bundle_type< Graph >
|
{
|
};
|
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct edge_bundle_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: edge_bundle_type< Graph >
|
{
|
};
|
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
struct graph_bundle_type<
|
filtered_graph< Graph, EdgePredicate, VertexPredicate > >
|
: graph_bundle_type< Graph >
|
{
|
};
|
|
//===========================================================================
|
// Non-member functions for the Filtered Edge Graph
|
|
// Helper functions
|
template < typename Graph, typename EdgePredicate >
|
inline filtered_graph< Graph, EdgePredicate > make_filtered_graph(
|
Graph& g, EdgePredicate ep)
|
{
|
return filtered_graph< Graph, EdgePredicate >(g, ep);
|
}
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
inline filtered_graph< Graph, EdgePredicate, VertexPredicate >
|
make_filtered_graph(Graph& g, EdgePredicate ep, VertexPredicate vp)
|
{
|
return filtered_graph< Graph, EdgePredicate, VertexPredicate >(g, ep, vp);
|
}
|
|
template < typename Graph, typename EdgePredicate >
|
inline filtered_graph< const Graph, EdgePredicate > make_filtered_graph(
|
const Graph& g, EdgePredicate ep)
|
{
|
return filtered_graph< const Graph, EdgePredicate >(g, ep);
|
}
|
template < typename Graph, typename EdgePredicate, typename VertexPredicate >
|
inline filtered_graph< const Graph, EdgePredicate, VertexPredicate >
|
make_filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp)
|
{
|
return filtered_graph< const Graph, EdgePredicate, VertexPredicate >(
|
g, ep, vp);
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::vertex_iterator,
|
typename filtered_graph< G, EP, VP >::vertex_iterator >
|
vertices(const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typename graph_traits< G >::vertex_iterator f, l;
|
boost::tie(f, l) = vertices(g.m_g);
|
typedef typename Graph::vertex_iterator iter;
|
return std::make_pair(
|
iter(g.m_vertex_pred, f, l), iter(g.m_vertex_pred, l, l));
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::edge_iterator,
|
typename filtered_graph< G, EP, VP >::edge_iterator >
|
edges(const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typename Graph::EdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
|
typename graph_traits< G >::edge_iterator f, l;
|
boost::tie(f, l) = edges(g.m_g);
|
typedef typename Graph::edge_iterator iter;
|
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
|
}
|
|
// An alternative for num_vertices() and num_edges() would be to
|
// count the number in the filtered graph. This is problematic
|
// because of the interaction with the vertex indices... they would
|
// no longer go from 0 to num_vertices(), which would cause trouble
|
// for algorithms allocating property storage in an array. We could
|
// try to create a mapping to new recalibrated indices, but I don't
|
// see an efficient way to do this.
|
//
|
// However, the current solution is still unsatisfactory because
|
// the following semantic constraints no longer hold:
|
// boost::tie(vi, viend) = vertices(g);
|
// assert(std::distance(vi, viend) == num_vertices(g));
|
|
template < typename G, typename EP, typename VP >
|
typename filtered_graph< G, EP, VP >::vertices_size_type num_vertices(
|
const filtered_graph< G, EP, VP >& g)
|
{
|
return num_vertices(g.m_g);
|
}
|
|
template < typename G, typename EP, typename VP >
|
typename filtered_graph< G, EP, VP >::edges_size_type num_edges(
|
const filtered_graph< G, EP, VP >& g)
|
{
|
return num_edges(g.m_g);
|
}
|
|
template < typename G >
|
typename filtered_graph_base< G >::vertex_descriptor source(
|
typename filtered_graph_base< G >::edge_descriptor e,
|
const filtered_graph_base< G >& g)
|
{
|
return source(e, g.m_g);
|
}
|
|
template < typename G >
|
typename filtered_graph_base< G >::vertex_descriptor target(
|
typename filtered_graph_base< G >::edge_descriptor e,
|
const filtered_graph_base< G >& g)
|
{
|
return target(e, g.m_g);
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::out_edge_iterator,
|
typename filtered_graph< G, EP, VP >::out_edge_iterator >
|
out_edges(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
|
typedef typename Graph::out_edge_iterator iter;
|
typename graph_traits< G >::out_edge_iterator f, l;
|
boost::tie(f, l) = out_edges(u, g.m_g);
|
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
|
}
|
|
template < typename G, typename EP, typename VP >
|
typename filtered_graph< G, EP, VP >::degree_size_type out_degree(
|
typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typename filtered_graph< G, EP, VP >::degree_size_type n = 0;
|
typename filtered_graph< G, EP, VP >::out_edge_iterator f, l;
|
for (boost::tie(f, l) = out_edges(u, g); f != l; ++f)
|
++n;
|
return n;
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::adjacency_iterator,
|
typename filtered_graph< G, EP, VP >::adjacency_iterator >
|
adjacent_vertices(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typedef typename Graph::adjacency_iterator adjacency_iterator;
|
typename Graph::out_edge_iterator f, l;
|
boost::tie(f, l) = out_edges(u, g);
|
return std::make_pair(adjacency_iterator(f, const_cast< Graph* >(&g)),
|
adjacency_iterator(l, const_cast< Graph* >(&g)));
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::in_edge_iterator,
|
typename filtered_graph< G, EP, VP >::in_edge_iterator >
|
in_edges(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typename Graph::InEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
|
typedef typename Graph::in_edge_iterator iter;
|
typename graph_traits< G >::in_edge_iterator f, l;
|
boost::tie(f, l) = in_edges(u, g.m_g);
|
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
|
}
|
|
template < typename G, typename EP, typename VP >
|
typename filtered_graph< G, EP, VP >::degree_size_type in_degree(
|
typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typename filtered_graph< G, EP, VP >::degree_size_type n = 0;
|
typename filtered_graph< G, EP, VP >::in_edge_iterator f, l;
|
for (boost::tie(f, l) = in_edges(u, g); f != l; ++f)
|
++n;
|
return n;
|
}
|
|
template < typename G, typename EP, typename VP >
|
typename enable_if< typename is_directed_graph< G >::type,
|
typename filtered_graph< G, EP, VP >::degree_size_type >::type
|
degree(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
return out_degree(u, g) + in_degree(u, g);
|
}
|
|
template < typename G, typename EP, typename VP >
|
typename disable_if< typename is_directed_graph< G >::type,
|
typename filtered_graph< G, EP, VP >::degree_size_type >::type
|
degree(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
return out_degree(u, g);
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::edge_descriptor, bool > edge(
|
typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
typename filtered_graph< G, EP, VP >::vertex_descriptor v,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typename graph_traits< G >::edge_descriptor e;
|
bool exists;
|
boost::tie(e, exists) = edge(u, v, g.m_g);
|
return std::make_pair(e, exists && g.m_edge_pred(e));
|
}
|
|
template < typename G, typename EP, typename VP >
|
std::pair< typename filtered_graph< G, EP, VP >::out_edge_iterator,
|
typename filtered_graph< G, EP, VP >::out_edge_iterator >
|
edge_range(typename filtered_graph< G, EP, VP >::vertex_descriptor u,
|
typename filtered_graph< G, EP, VP >::vertex_descriptor v,
|
const filtered_graph< G, EP, VP >& g)
|
{
|
typedef filtered_graph< G, EP, VP > Graph;
|
typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
|
typedef typename Graph::out_edge_iterator iter;
|
typename graph_traits< G >::out_edge_iterator f, l;
|
boost::tie(f, l) = edge_range(u, v, g.m_g);
|
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
|
}
|
|
//===========================================================================
|
// Property map
|
|
template < typename G, typename EP, typename VP, typename Property >
|
struct property_map< filtered_graph< G, EP, VP >, Property >
|
: property_map< G, Property >
|
{
|
};
|
|
template < typename G, typename EP, typename VP, typename Property >
|
typename property_map< G, Property >::type get(
|
Property p, filtered_graph< G, EP, VP >& g)
|
{
|
return get(p, const_cast< G& >(g.m_g));
|
}
|
|
template < typename G, typename EP, typename VP, typename Property >
|
typename property_map< G, Property >::const_type get(
|
Property p, const filtered_graph< G, EP, VP >& g)
|
{
|
return get(p, (const G&)g.m_g);
|
}
|
|
template < typename G, typename EP, typename VP, typename Property,
|
typename Key >
|
typename property_map_value< G, Property >::type get(
|
Property p, const filtered_graph< G, EP, VP >& g, const Key& k)
|
{
|
return get(p, (const G&)g.m_g, k);
|
}
|
|
template < typename G, typename EP, typename VP, typename Property,
|
typename Key, typename Value >
|
void put(Property p, const filtered_graph< G, EP, VP >& g, const Key& k,
|
const Value& val)
|
{
|
put(p, const_cast< G& >(g.m_g), k, val);
|
}
|
|
//===========================================================================
|
// Some filtered subgraph specializations
|
|
template < typename Graph, typename Set > struct vertex_subset_filter
|
{
|
typedef filtered_graph< Graph, keep_all, is_in_subset< Set > > type;
|
};
|
template < typename Graph, typename Set >
|
inline typename vertex_subset_filter< Graph, Set >::type
|
make_vertex_subset_filter(Graph& g, const Set& s)
|
{
|
typedef typename vertex_subset_filter< Graph, Set >::type Filter;
|
is_in_subset< Set > p(s);
|
return Filter(g, keep_all(), p);
|
}
|
|
// This is misspelled, but present for backwards compatibility; new code
|
// should use the version below that has the correct spelling.
|
template < typename Graph, typename Set > struct vertex_subset_compliment_filter
|
{
|
typedef filtered_graph< Graph, keep_all, is_not_in_subset< Set > > type;
|
};
|
template < typename Graph, typename Set >
|
inline typename vertex_subset_compliment_filter< Graph, Set >::type
|
make_vertex_subset_compliment_filter(Graph& g, const Set& s)
|
{
|
typedef typename vertex_subset_compliment_filter< Graph, Set >::type Filter;
|
is_not_in_subset< Set > p(s);
|
return Filter(g, keep_all(), p);
|
}
|
|
template < typename Graph, typename Set > struct vertex_subset_complement_filter
|
{
|
typedef filtered_graph< Graph, keep_all, is_not_in_subset< Set > > type;
|
};
|
template < typename Graph, typename Set >
|
inline typename vertex_subset_complement_filter< Graph, Set >::type
|
make_vertex_subset_complement_filter(Graph& g, const Set& s)
|
{
|
typedef typename vertex_subset_complement_filter< Graph, Set >::type Filter;
|
is_not_in_subset< Set > p(s);
|
return Filter(g, keep_all(), p);
|
}
|
|
// Filter that uses a property map whose value_type is a boolean
|
template < typename PropertyMap > struct property_map_filter
|
{
|
|
property_map_filter() {}
|
|
property_map_filter(const PropertyMap& property_map)
|
: m_property_map(property_map)
|
{
|
}
|
|
template < typename Key > bool operator()(const Key& key) const
|
{
|
return (get(m_property_map, key));
|
}
|
|
private:
|
PropertyMap m_property_map;
|
};
|
|
} // namespace boost
|
|
#endif // BOOST_FILTERED_GRAPH_HPP
|