//=======================================================================
|
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
|
// Copyright 2004 The Trustees of Indiana University
|
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
|
//
|
// Distributed under the Boost Software License, Version 1.0. (See
|
// accompanying file LICENSE_1_0.txt or copy at
|
// http://www.boost.org/LICENSE_1_0.txt)
|
//=======================================================================
|
#ifndef BOOST_GRAPH_SEQUENTIAL_VERTEX_COLORING_HPP
|
#define BOOST_GRAPH_SEQUENTIAL_VERTEX_COLORING_HPP
|
|
#include <vector>
|
#include <boost/graph/graph_traits.hpp>
|
#include <boost/tuple/tuple.hpp>
|
#include <boost/property_map/property_map.hpp>
|
#include <boost/limits.hpp>
|
|
#ifdef BOOST_NO_TEMPLATED_ITERATOR_CONSTRUCTORS
|
#include <iterator>
|
#endif
|
|
/* This algorithm is to find coloring of a graph
|
|
Algorithm:
|
Let G = (V,E) be a graph with vertices (somehow) ordered v_1, v_2, ...,
|
v_n. For k = 1, 2, ..., n the sequential algorithm assigns v_k to the
|
smallest possible color.
|
|
Reference:
|
|
Thomas F. Coleman and Jorge J. More, Estimation of sparse Jacobian
|
matrices and graph coloring problems. J. Numer. Anal. V20, P187-209, 1983
|
|
v_k is stored as o[k] here.
|
|
The color of the vertex v will be stored in color[v].
|
i.e., vertex v belongs to coloring color[v] */
|
|
namespace boost
|
{
|
template < class VertexListGraph, class OrderPA, class ColorMap >
|
typename property_traits< ColorMap >::value_type sequential_vertex_coloring(
|
const VertexListGraph& G, OrderPA order, ColorMap color)
|
{
|
typedef graph_traits< VertexListGraph > GraphTraits;
|
typedef typename GraphTraits::vertex_descriptor Vertex;
|
typedef typename property_traits< ColorMap >::value_type size_type;
|
|
size_type max_color = 0;
|
const size_type V = num_vertices(G);
|
|
// We need to keep track of which colors are used by
|
// adjacent vertices. We do this by marking the colors
|
// that are used. The mark array contains the mark
|
// for each color. The length of mark is the
|
// number of vertices since the maximum possible number of colors
|
// is the number of vertices.
|
std::vector< size_type > mark(V,
|
std::numeric_limits< size_type >::max
|
BOOST_PREVENT_MACRO_SUBSTITUTION());
|
|
// Initialize colors
|
typename GraphTraits::vertex_iterator v, vend;
|
for (boost::tie(v, vend) = vertices(G); v != vend; ++v)
|
put(color, *v, V - 1);
|
|
// Determine the color for every vertex one by one
|
for (size_type i = 0; i < V; i++)
|
{
|
Vertex current = get(order, i);
|
typename GraphTraits::adjacency_iterator v, vend;
|
|
// Mark the colors of vertices adjacent to current.
|
// i can be the value for marking since i increases successively
|
for (boost::tie(v, vend) = adjacent_vertices(current, G); v != vend;
|
++v)
|
mark[get(color, *v)] = i;
|
|
// Next step is to assign the smallest un-marked color
|
// to the current vertex.
|
size_type j = 0;
|
|
// Scan through all useable colors, find the smallest possible
|
// color that is not used by neighbors. Note that if mark[j]
|
// is equal to i, color j is used by one of the current vertex's
|
// neighbors.
|
while (j < max_color && mark[j] == i)
|
++j;
|
|
if (j == max_color) // All colors are used up. Add one more color
|
++max_color;
|
|
// At this point, j is the smallest possible color
|
put(color, current, j); // Save the color of vertex current
|
}
|
|
return max_color;
|
}
|
|
template < class VertexListGraph, class ColorMap >
|
typename property_traits< ColorMap >::value_type sequential_vertex_coloring(
|
const VertexListGraph& G, ColorMap color)
|
{
|
typedef typename graph_traits< VertexListGraph >::vertex_descriptor
|
vertex_descriptor;
|
typedef typename graph_traits< VertexListGraph >::vertex_iterator
|
vertex_iterator;
|
|
std::pair< vertex_iterator, vertex_iterator > v = vertices(G);
|
#ifndef BOOST_NO_TEMPLATED_ITERATOR_CONSTRUCTORS
|
std::vector< vertex_descriptor > order(v.first, v.second);
|
#else
|
std::vector< vertex_descriptor > order;
|
order.reserve(std::distance(v.first, v.second));
|
while (v.first != v.second)
|
order.push_back(*v.first++);
|
#endif
|
return sequential_vertex_coloring(G,
|
make_iterator_property_map(order.begin(), identity_property_map(),
|
graph_traits< VertexListGraph >::null_vertex()),
|
color);
|
}
|
}
|
|
#endif
|