liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
 
// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
//
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
//     depending on your compiler.
//
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
//     required power of 5, only store every 26th entry, and compute
//     intermediate values with a multiplication. This reduces the lookup table
//     size by about 10x (only one case, and only double) at the cost of some
//     performance. Currently requires MSVC intrinsics.
 
/*
    This is a derivative work
*/
 
#ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
#define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
 
#include <boost/json/detail/ryu/ryu.hpp>
#include <cstdlib>
#include <cstring>
 
#ifdef RYU_DEBUG
#include <stdio.h>
#endif
 
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
// Let's do the same for now.
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
#define BOOST_JSON_RYU_HAS_UINT128
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
#endif
 
#include <boost/json/detail/ryu/detail/common.hpp>
#include <boost/json/detail/ryu/detail/digit_table.hpp>
#include <boost/json/detail/ryu/detail/d2s.hpp>
#include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
 
BOOST_JSON_NS_BEGIN
namespace detail {
 
namespace ryu {
namespace detail {
 
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
// Multiplication:
//   The 64-bit factor is variable and passed in, the 128-bit factor comes
//   from a lookup table. We know that the 64-bit factor only has 55
//   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
//   factor only has 124 significant bits (i.e., the 4 topmost bits are
//   zeros).
// Shift:
//   In principle, the multiplication result requires 55 + 124 = 179 bits to
//   represent. However, we then shift this value to the right by j, which is
//   at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
//   bits. This means that we only need the topmost 64 significant bits of
//   the 64x128-bit multiplication.
//
// There are several ways to do this:
// 1. Best case: the compiler exposes a 128-bit type.
//    We perform two 64x64-bit multiplications, add the higher 64 bits of the
//    lower result to the higher result, and shift by j - 64 bits.
//
//    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
//    that these are only 64-bit inputs, and can map these to the best
//    possible sequence of assembly instructions.
//    x64 machines happen to have matching assembly instructions for
//    64x64-bit multiplications and 128-bit shifts.
//
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
//    instructions mentioned in 1.
//
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
//    the result, i.e., we have to use plain C.
//    Our inputs are less than the full width, so we have three options:
//    a. Ignore this fact and just implement the intrinsics manually.
//    b. Split both into 31-bit pieces, which guarantees no internal overflow,
//       but requires extra work upfront (unless we change the lookup table).
//    c. Split only the first factor into 31-bit pieces, which also guarantees
//       no internal overflow, but requires extra work since the intermediate
//       results are not perfectly aligned.
#if defined(BOOST_JSON_RYU_HAS_UINT128)
 
// Best case: use 128-bit type.
inline
std::uint64_t
    mulShift(
    const std::uint64_t m,
    const std::uint64_t* const mul,
    const std::int32_t j) noexcept
{
    const uint128_t b0 = ((uint128_t) m) * mul[0];
    const uint128_t b2 = ((uint128_t) m) * mul[1];
    return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
}
 
inline
uint64_t
mulShiftAll(
    const std::uint64_t m,
    const std::uint64_t* const mul,
    std::int32_t const j,
    std::uint64_t* const vp,
    std::uint64_t* const vm,
    const std::uint32_t mmShift) noexcept
{
//  m <<= 2;
//  uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
//  uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
//
//  uint128_t hi = (b0 >> 64) + b2;
//  uint128_t lo = b0 & 0xffffffffffffffffull;
//  uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
//  uint128_t vpLo = lo + (factor << 1);
//  *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
//  uint128_t vmLo = lo - (factor << mmShift);
//  *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
//  return (std::uint64_t) (hi >> (j - 64));
    *vp = mulShift(4 * m + 2, mul, j);
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
    return mulShift(4 * m, mul, j);
}
 
#elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
 
inline
std::uint64_t
mulShift(
    const std::uint64_t m,
    const std::uint64_t* const mul,
    const std::int32_t j) noexcept
{
    // m is maximum 55 bits
    std::uint64_t high1;                                   // 128
    std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
    std::uint64_t high0;                                   // 64
    umul128(m, mul[0], &high0);                            // 0
    std::uint64_t const sum = high0 + low1;
    if (sum < high0)
        ++high1; // overflow into high1
    return shiftright128(sum, high1, j - 64);
}
 
inline
std::uint64_t
mulShiftAll(
    const std::uint64_t m,
    const std::uint64_t* const mul,
    const std::int32_t j,
    std::uint64_t* const vp,
    std::uint64_t* const vm,
    const std::uint32_t mmShift) noexcept
{
    *vp = mulShift(4 * m + 2, mul, j);
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
    return mulShift(4 * m, mul, j);
}
 
#else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
 
inline
std::uint64_t
mulShiftAll(
    std::uint64_t m,
    const std::uint64_t* const mul,
    const std::int32_t j,
    std::uint64_t* const vp,
    std::uint64_t* const vm,
    const std::uint32_t mmShift)
{
    m <<= 1;
    // m is maximum 55 bits
    std::uint64_t tmp;
    std::uint64_t const lo = umul128(m, mul[0], &tmp);
    std::uint64_t hi;
    std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
    hi += mid < tmp; // overflow into hi
 
    const std::uint64_t lo2 = lo + mul[0];
    const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
    const std::uint64_t hi2 = hi + (mid2 < mid);
    *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
 
    if (mmShift == 1)
    {
        const std::uint64_t lo3 = lo - mul[0];
        const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
        const std::uint64_t hi3 = hi - (mid3 > mid);
        *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
    }
    else
    {
        const std::uint64_t lo3 = lo + lo;
        const std::uint64_t mid3 = mid + mid + (lo3 < lo);
        const std::uint64_t hi3 = hi + hi + (mid3 < mid);
        const std::uint64_t lo4 = lo3 - mul[0];
        const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
        const std::uint64_t hi4 = hi3 - (mid4 > mid3);
        *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
    }
 
    return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
}
 
#endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
 
inline
std::uint32_t
decimalLength17(
    const std::uint64_t v)
{
    // This is slightly faster than a loop.
    // The average output length is 16.38 digits, so we check high-to-low.
    // Function precondition: v is not an 18, 19, or 20-digit number.
    // (17 digits are sufficient for round-tripping.)
    BOOST_ASSERT(v < 100000000000000000L);
    if (v >= 10000000000000000L) { return 17; }
    if (v >= 1000000000000000L) { return 16; }
    if (v >= 100000000000000L) { return 15; }
    if (v >= 10000000000000L) { return 14; }
    if (v >= 1000000000000L) { return 13; }
    if (v >= 100000000000L) { return 12; }
    if (v >= 10000000000L) { return 11; }
    if (v >= 1000000000L) { return 10; }
    if (v >= 100000000L) { return 9; }
    if (v >= 10000000L) { return 8; }
    if (v >= 1000000L) { return 7; }
    if (v >= 100000L) { return 6; }
    if (v >= 10000L) { return 5; }
    if (v >= 1000L) { return 4; }
    if (v >= 100L) { return 3; }
    if (v >= 10L) { return 2; }
    return 1;
}
 
// A floating decimal representing m * 10^e.
struct floating_decimal_64
{
    std::uint64_t mantissa;
    // Decimal exponent's range is -324 to 308
    // inclusive, and can fit in a short if needed.
    std::int32_t exponent;
};
 
inline
floating_decimal_64
d2d(
    const std::uint64_t ieeeMantissa,
    const std::uint32_t ieeeExponent)
{
    std::int32_t e2;
    std::uint64_t m2;
    if (ieeeExponent == 0)
    {
        // We subtract 2 so that the bounds computation has 2 additional bits.
        e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
        m2 = ieeeMantissa;
    }
    else
    {
        e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
        m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
    }
    const bool even = (m2 & 1) == 0;
    const bool acceptBounds = even;
 
#ifdef RYU_DEBUG
    printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
#endif
 
    // Step 2: Determine the interval of valid decimal representations.
    const std::uint64_t mv = 4 * m2;
    // Implicit bool -> int conversion. True is 1, false is 0.
    const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
    // We would compute mp and mm like this:
    // uint64_t mp = 4 * m2 + 2;
    // uint64_t mm = mv - 1 - mmShift;
 
    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
    std::uint64_t vr, vp, vm;
    std::int32_t e10;
    bool vmIsTrailingZeros = false;
    bool vrIsTrailingZeros = false;
    if (e2 >= 0) {
        // I tried special-casing q == 0, but there was no effect on performance.
        // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
        const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
        e10 = (std::int32_t)q;
        const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
        const std::int32_t i = -e2 + (std::int32_t)q + k;
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
        uint64_t pow5[2];
        double_computeInvPow5(q, pow5);
        vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
#else
        vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
        printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
        if (q <= 21)
        {
            // This should use q <= 22, but I think 21 is also safe. Smaller values
            // may still be safe, but it's more difficult to reason about them.
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
            const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
            if (mvMod5 == 0)
            {
                vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
            }
            else if (acceptBounds)
            {
                // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
                // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
                // <=> true && pow5Factor(mm) >= q, since e2 >= q.
                vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
            }
            else
            {
                // Same as min(e2 + 1, pow5Factor(mp)) >= q.
                vp -= multipleOfPowerOf5(mv + 2, q);
            }
        }
    }
    else
    {
        // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
        const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
        e10 = (std::int32_t)q + e2;
        const std::int32_t i = -e2 - (std::int32_t)q;
        const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
        const std::int32_t j = (std::int32_t)q - k;
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
        std::uint64_t pow5[2];
        double_computePow5(i, pow5);
        vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
#else
        vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
        printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
        printf("%u %d %d %d\n", q, i, k, j);
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
        if (q <= 1)
        {
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
            vrIsTrailingZeros = true;
            if (acceptBounds)
            {
                // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
                vmIsTrailingZeros = mmShift == 1;
            }
            else
            {
                // mp = mv + 2, so it always has at least one trailing 0 bit.
                --vp;
            }
        }
        else if (q < 63)
        {
            // TODO(ulfjack): Use a tighter bound here.
            // We want to know if the full product has at least q trailing zeros.
            // We need to compute min(p2(mv), p5(mv) - e2) >= q
            // <=> p2(mv) >= q && p5(mv) - e2 >= q
            // <=> p2(mv) >= q (because -e2 >= q)
            vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
#ifdef RYU_DEBUG
            printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
        }
    }
#ifdef RYU_DEBUG
    printf("e10=%d\n", e10);
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
 
    // Step 4: Find the shortest decimal representation in the interval of valid representations.
    std::int32_t removed = 0;
    std::uint8_t lastRemovedDigit = 0;
    std::uint64_t output;
    // On average, we remove ~2 digits.
    if (vmIsTrailingZeros || vrIsTrailingZeros)
    {
        // General case, which happens rarely (~0.7%).
        for (;;)
        {
            const std::uint64_t vpDiv10 = div10(vp);
            const std::uint64_t vmDiv10 = div10(vm);
            if (vpDiv10 <= vmDiv10)
                break;
            const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
            const std::uint64_t vrDiv10 = div10(vr);
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
            vmIsTrailingZeros &= vmMod10 == 0;
            vrIsTrailingZeros &= lastRemovedDigit == 0;
            lastRemovedDigit = (uint8_t)vrMod10;
            vr = vrDiv10;
            vp = vpDiv10;
            vm = vmDiv10;
            ++removed;
        }
#ifdef RYU_DEBUG
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
        printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
        if (vmIsTrailingZeros)
        {
            for (;;)
            {
                const std::uint64_t vmDiv10 = div10(vm);
                const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
                if (vmMod10 != 0)
                    break;
                const std::uint64_t vpDiv10 = div10(vp);
                const std::uint64_t vrDiv10 = div10(vr);
                const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
                vrIsTrailingZeros &= lastRemovedDigit == 0;
                lastRemovedDigit = (uint8_t)vrMod10;
                vr = vrDiv10;
                vp = vpDiv10;
                vm = vmDiv10;
                ++removed;
            }
        }
#ifdef RYU_DEBUG
        printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
        if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
        {
            // Round even if the exact number is .....50..0.
            lastRemovedDigit = 4;
        }
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
    }
    else
    {
        // Specialized for the common case (~99.3%). Percentages below are relative to this.
        bool roundUp = false;
        const std::uint64_t vpDiv100 = div100(vp);
        const std::uint64_t vmDiv100 = div100(vm);
        if (vpDiv100 > vmDiv100)
        {
            // Optimization: remove two digits at a time (~86.2%).
            const std::uint64_t vrDiv100 = div100(vr);
            const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
            roundUp = vrMod100 >= 50;
            vr = vrDiv100;
            vp = vpDiv100;
            vm = vmDiv100;
            removed += 2;
        }
        // Loop iterations below (approximately), without optimization above:
        // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
        // Loop iterations below (approximately), with optimization above:
        // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
        for (;;)
        {
            const std::uint64_t vpDiv10 = div10(vp);
            const std::uint64_t vmDiv10 = div10(vm);
            if (vpDiv10 <= vmDiv10)
                break;
            const std::uint64_t vrDiv10 = div10(vr);
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
            roundUp = vrMod10 >= 5;
            vr = vrDiv10;
            vp = vpDiv10;
            vm = vmDiv10;
            ++removed;
        }
#ifdef RYU_DEBUG
        printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        output = vr + (vr == vm || roundUp);
    }
    const std::int32_t exp = e10 + removed;
 
#ifdef RYU_DEBUG
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
    printf("O=%" PRIu64 "\n", output);
    printf("EXP=%d\n", exp);
#endif
 
    floating_decimal_64 fd;
    fd.exponent = exp;
    fd.mantissa = output;
    return fd;
}
 
inline
int
to_chars(
    const floating_decimal_64 v,
    const bool sign,
    char* const result)
{
    // Step 5: Print the decimal representation.
    int index = 0;
    if (sign)
        result[index++] = '-';
 
    std::uint64_t output = v.mantissa;
    std::uint32_t const olength = decimalLength17(output);
 
#ifdef RYU_DEBUG
    printf("DIGITS=%" PRIu64 "\n", v.mantissa);
    printf("OLEN=%u\n", olength);
    printf("EXP=%u\n", v.exponent + olength);
#endif
 
    // Print the decimal digits.
    // The following code is equivalent to:
    // for (uint32_t i = 0; i < olength - 1; ++i) {
    //   const uint32_t c = output % 10; output /= 10;
    //   result[index + olength - i] = (char) ('0' + c);
    // }
    // result[index] = '0' + output % 10;
 
    std::uint32_t i = 0;
    // We prefer 32-bit operations, even on 64-bit platforms.
    // We have at most 17 digits, and uint32_t can store 9 digits.
    // If output doesn't fit into uint32_t, we cut off 8 digits,
    // so the rest will fit into uint32_t.
    if ((output >> 32) != 0)
    {
        // Expensive 64-bit division.
        std::uint64_t const q = div1e8(output);
        std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
        output = q;
 
        const std::uint32_t c = output2 % 10000;
        output2 /= 10000;
        const std::uint32_t d = output2 % 10000;
        const std::uint32_t c0 = (c % 100) << 1;
        const std::uint32_t c1 = (c / 100) << 1;
        const std::uint32_t d0 = (d % 100) << 1;
        const std::uint32_t d1 = (d / 100) << 1;
        std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
        std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
        std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
        std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
        i += 8;
    }
    uint32_t output2 = (std::uint32_t)output;
    while (output2 >= 10000)
    {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
        const uint32_t c = output2 - 10000 * (output2 / 10000);
#else
        const uint32_t c = output2 % 10000;
#endif
        output2 /= 10000;
        const uint32_t c0 = (c % 100) << 1;
        const uint32_t c1 = (c / 100) << 1;
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
        memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
        i += 4;
    }
    if (output2 >= 100) {
        const uint32_t c = (output2 % 100) << 1;
        output2 /= 100;
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
        i += 2;
    }
    if (output2 >= 10) {
        const uint32_t c = output2 << 1;
        // We can't use memcpy here: the decimal dot goes between these two digits.
        result[index + olength - i] = DIGIT_TABLE()[c + 1];
        result[index] = DIGIT_TABLE()[c];
    }
    else {
        result[index] = (char)('0' + output2);
    }
 
    // Print decimal point if needed.
    if (olength > 1) {
        result[index + 1] = '.';
        index += olength + 1;
    }
    else {
        ++index;
    }
 
    // Print the exponent.
    result[index++] = 'E';
    int32_t exp = v.exponent + (int32_t)olength - 1;
    if (exp < 0) {
        result[index++] = '-';
        exp = -exp;
    }
 
    if (exp >= 100) {
        const int32_t c = exp % 10;
        memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
        result[index + 2] = (char)('0' + c);
        index += 3;
    }
    else if (exp >= 10) {
        memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
        index += 2;
    }
    else {
        result[index++] = (char)('0' + exp);
    }
 
    return index;
}
 
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
  floating_decimal_64* const v) {
  const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
  const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
 
  if (e2 > 0) {
    // f = m2 * 2^e2 >= 2^53 is an integer.
    // Ignore this case for now.
    return false;
  }
 
  if (e2 < -52) {
    // f < 1.
    return false;
  }
 
  // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
  // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
  const uint64_t mask = (1ull << -e2) - 1;
  const uint64_t fraction = m2 & mask;
  if (fraction != 0) {
    return false;
  }
 
  // f is an integer in the range [1, 2^53).
  // Note: mantissa might contain trailing (decimal) 0's.
  // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
  v->mantissa = m2 >> -e2;
  v->exponent = 0;
  return true;
}
 
} // detail
 
int
d2s_buffered_n(
    double f,
    char* result) noexcept
{
    using namespace detail;
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
    std::uint64_t const bits = double_to_bits(f);
 
#ifdef RYU_DEBUG
    printf("IN=");
    for (std::int32_t bit = 63; bit >= 0; --bit) {
        printf("%d", (int)((bits >> bit) & 1));
    }
    printf("\n");
#endif
 
    // Decode bits into sign, mantissa, and exponent.
    const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
    const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
    const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
    // Case distinction; exit early for the easy cases.
    if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
        return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
    }
 
    floating_decimal_64 v;
    const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
    if (isSmallInt) {
        // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
        // For scientific notation we need to move these zeros into the exponent.
        // (This is not needed for fixed-point notation, so it might be beneficial to trim
        // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
        for (;;) {
            std::uint64_t const q = div10(v.mantissa);
            std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
            if (r != 0)
                break;
            v.mantissa = q;
            ++v.exponent;
        }
    }
    else {
        v = d2d(ieeeMantissa, ieeeExponent);
    }
 
    return to_chars(v, ieeeSign, result);
}
 
void
d2s_buffered(
    double f,
    char* result) noexcept
{
    const int index = d2s_buffered_n(f, result);
 
    // Terminate the string.
    result[index] = '\0';
}
 
char*
d2s(double f) noexcept
{
    static thread_local char result[25];
    d2s_buffered(f, result);
    return result;
}
 
} // ryu
 
} // detail
BOOST_JSON_NS_END
 
#endif