// Copyright Nick Thompson, 2019
|
// Use, modification and distribution are subject to the
|
// Boost Software License, Version 1.0.
|
// (See accompanying file LICENSE_1_0.txt
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
#ifndef BOOST_MATH_INTERPOLATORS_CARDINAL_QUINTIC_B_SPLINE_DETAIL_HPP
|
#define BOOST_MATH_INTERPOLATORS_CARDINAL_QUINTIC_B_SPLINE_DETAIL_HPP
|
#include <cmath>
|
#include <vector>
|
#include <utility>
|
#include <boost/math/special_functions/cardinal_b_spline.hpp>
|
|
namespace boost{ namespace math{ namespace interpolators{ namespace detail{
|
|
|
template <class Real>
|
class cardinal_quintic_b_spline_detail
|
{
|
public:
|
// If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
|
// y[0] = y(a), y[n -1] = y(b), step_size = (b - a)/(n -1).
|
|
cardinal_quintic_b_spline_detail(const Real* const y,
|
size_t n,
|
Real t0 /* initial time, left endpoint */,
|
Real h /*spacing, stepsize*/,
|
std::pair<Real, Real> left_endpoint_derivatives,
|
std::pair<Real, Real> right_endpoint_derivatives)
|
{
|
static_assert(!std::is_integral<Real>::value, "The quintic B-spline interpolator only works with floating point types.");
|
if (h <= 0) {
|
throw std::logic_error("Spacing must be > 0.");
|
}
|
m_inv_h = 1/h;
|
m_t0 = t0;
|
|
if (n < 8) {
|
throw std::logic_error("The quintic B-spline interpolator requires at least 8 points.");
|
}
|
|
using std::isnan;
|
// This interpolator has error of order h^6, so the derivatives should be estimated with the same error.
|
// See: https://en.wikipedia.org/wiki/Finite_difference_coefficient
|
if (isnan(left_endpoint_derivatives.first)) {
|
Real tmp = -49*y[0]/20 + 6*y[1] - 15*y[2]/2 + 20*y[3]/3 - 15*y[4]/4 + 6*y[5]/5 - y[6]/6;
|
left_endpoint_derivatives.first = tmp/h;
|
}
|
if (isnan(right_endpoint_derivatives.first)) {
|
Real tmp = 49*y[n-1]/20 - 6*y[n-2] + 15*y[n-3]/2 - 20*y[n-4]/3 + 15*y[n-5]/4 - 6*y[n-6]/5 + y[n-7]/6;
|
right_endpoint_derivatives.first = tmp/h;
|
}
|
if(isnan(left_endpoint_derivatives.second)) {
|
Real tmp = 469*y[0]/90 - 223*y[1]/10 + 879*y[2]/20 - 949*y[3]/18 + 41*y[4] - 201*y[5]/10 + 1019*y[6]/180 - 7*y[7]/10;
|
left_endpoint_derivatives.second = tmp/(h*h);
|
}
|
if (isnan(right_endpoint_derivatives.second)) {
|
Real tmp = 469*y[n-1]/90 - 223*y[n-2]/10 + 879*y[n-3]/20 - 949*y[n-4]/18 + 41*y[n-5] - 201*y[n-6]/10 + 1019*y[n-7]/180 - 7*y[n-8]/10;
|
right_endpoint_derivatives.second = tmp/(h*h);
|
}
|
|
// This is really challenging my mental limits on by-hand row reduction.
|
// I debated bringing in a dependency on a sparse linear solver, but given that that would cause much agony for users I decided against it.
|
|
std::vector<Real> rhs(n+4);
|
rhs[0] = 20*y[0] - 12*h*left_endpoint_derivatives.first + 2*h*h*left_endpoint_derivatives.second;
|
rhs[1] = 60*y[0] - 12*h*left_endpoint_derivatives.first;
|
for (size_t i = 2; i < n + 2; ++i) {
|
rhs[i] = 120*y[i-2];
|
}
|
rhs[n+2] = 60*y[n-1] + 12*h*right_endpoint_derivatives.first;
|
rhs[n+3] = 20*y[n-1] + 12*h*right_endpoint_derivatives.first + 2*h*h*right_endpoint_derivatives.second;
|
|
std::vector<Real> diagonal(n+4, 66);
|
diagonal[0] = 1;
|
diagonal[1] = 18;
|
diagonal[n+2] = 18;
|
diagonal[n+3] = 1;
|
|
std::vector<Real> first_superdiagonal(n+4, 26);
|
first_superdiagonal[0] = 10;
|
first_superdiagonal[1] = 33;
|
first_superdiagonal[n+2] = 1;
|
// There is one less superdiagonal than diagonal; make sure that if we read it, it shows up as a bug:
|
first_superdiagonal[n+3] = std::numeric_limits<Real>::quiet_NaN();
|
|
std::vector<Real> second_superdiagonal(n+4, 1);
|
second_superdiagonal[0] = 9;
|
second_superdiagonal[1] = 8;
|
second_superdiagonal[n+2] = std::numeric_limits<Real>::quiet_NaN();
|
second_superdiagonal[n+3] = std::numeric_limits<Real>::quiet_NaN();
|
|
std::vector<Real> first_subdiagonal(n+4, 26);
|
first_subdiagonal[0] = std::numeric_limits<Real>::quiet_NaN();
|
first_subdiagonal[1] = 1;
|
first_subdiagonal[n+2] = 33;
|
first_subdiagonal[n+3] = 10;
|
|
std::vector<Real> second_subdiagonal(n+4, 1);
|
second_subdiagonal[0] = std::numeric_limits<Real>::quiet_NaN();
|
second_subdiagonal[1] = std::numeric_limits<Real>::quiet_NaN();
|
second_subdiagonal[n+2] = 8;
|
second_subdiagonal[n+3] = 9;
|
|
|
for (size_t i = 0; i < n+2; ++i) {
|
Real di = diagonal[i];
|
diagonal[i] = 1;
|
first_superdiagonal[i] /= di;
|
second_superdiagonal[i] /= di;
|
rhs[i] /= di;
|
|
// Eliminate first subdiagonal:
|
Real nfsub = -first_subdiagonal[i+1];
|
// Superfluous:
|
first_subdiagonal[i+1] /= nfsub;
|
// Not superfluous:
|
diagonal[i+1] /= nfsub;
|
first_superdiagonal[i+1] /= nfsub;
|
second_superdiagonal[i+1] /= nfsub;
|
rhs[i+1] /= nfsub;
|
|
diagonal[i+1] += first_superdiagonal[i];
|
first_superdiagonal[i+1] += second_superdiagonal[i];
|
rhs[i+1] += rhs[i];
|
// Superfluous, but clarifying:
|
first_subdiagonal[i+1] = 0;
|
|
// Eliminate second subdiagonal:
|
Real nssub = -second_subdiagonal[i+2];
|
first_subdiagonal[i+2] /= nssub;
|
diagonal[i+2] /= nssub;
|
first_superdiagonal[i+2] /= nssub;
|
second_superdiagonal[i+2] /= nssub;
|
rhs[i+2] /= nssub;
|
|
first_subdiagonal[i+2] += first_superdiagonal[i];
|
diagonal[i+2] += second_superdiagonal[i];
|
rhs[i+2] += rhs[i];
|
// Superfluous, but clarifying:
|
second_subdiagonal[i+2] = 0;
|
}
|
|
// Eliminate last subdiagonal:
|
Real dnp2 = diagonal[n+2];
|
diagonal[n+2] = 1;
|
first_superdiagonal[n+2] /= dnp2;
|
rhs[n+2] /= dnp2;
|
Real nfsubnp3 = -first_subdiagonal[n+3];
|
diagonal[n+3] /= nfsubnp3;
|
rhs[n+3] /= nfsubnp3;
|
|
diagonal[n+3] += first_superdiagonal[n+2];
|
rhs[n+3] += rhs[n+2];
|
|
m_alpha.resize(n + 4, std::numeric_limits<Real>::quiet_NaN());
|
|
m_alpha[n+3] = rhs[n+3]/diagonal[n+3];
|
m_alpha[n+2] = rhs[n+2] - first_superdiagonal[n+2]*m_alpha[n+3];
|
for (int64_t i = int64_t(n+1); i >= 0; --i) {
|
m_alpha[i] = rhs[i] - first_superdiagonal[i]*m_alpha[i+1] - second_superdiagonal[i]*m_alpha[i+2];
|
}
|
|
}
|
|
Real operator()(Real t) const {
|
using std::ceil;
|
using std::floor;
|
using boost::math::cardinal_b_spline;
|
// tf = t0 + (n-1)*h
|
// alpha.size() = n+4
|
if (t < m_t0 || t > m_t0 + (m_alpha.size()-5)/m_inv_h) {
|
const char* err_msg = "Tried to evaluate the cardinal quintic b-spline outside the domain of of interpolation; extrapolation does not work.";
|
throw std::domain_error(err_msg);
|
}
|
Real x = (t-m_t0)*m_inv_h;
|
// Support of B_5 is [-3, 3]. So -3 < x - j + 2 < 3, so x-1 < j < x+5.
|
// TODO: Zero pad m_alpha so that only the domain check is necessary.
|
int64_t j_min = std::max(int64_t(0), int64_t(ceil(x-1)));
|
int64_t j_max = std::min(int64_t(m_alpha.size() - 1), int64_t(floor(x+5)) );
|
Real s = 0;
|
for (int64_t j = j_min; j <= j_max; ++j) {
|
// TODO: Use Cox 1972 to generate all integer translates of B5 simultaneously.
|
s += m_alpha[j]*cardinal_b_spline<5, Real>(x - j + 2);
|
}
|
return s;
|
}
|
|
Real prime(Real t) const {
|
using std::ceil;
|
using std::floor;
|
using boost::math::cardinal_b_spline_prime;
|
if (t < m_t0 || t > m_t0 + (m_alpha.size()-5)/m_inv_h) {
|
const char* err_msg = "Tried to evaluate the cardinal quintic b-spline outside the domain of of interpolation; extrapolation does not work.";
|
throw std::domain_error(err_msg);
|
}
|
Real x = (t-m_t0)*m_inv_h;
|
// Support of B_5 is [-3, 3]. So -3 < x - j + 2 < 3, so x-1 < j < x+5
|
int64_t j_min = std::max(int64_t(0), int64_t(ceil(x-1)));
|
int64_t j_max = std::min(int64_t(m_alpha.size() - 1), int64_t(floor(x+5)) );
|
Real s = 0;
|
for (int64_t j = j_min; j <= j_max; ++j) {
|
s += m_alpha[j]*cardinal_b_spline_prime<5, Real>(x - j + 2);
|
}
|
return s*m_inv_h;
|
|
}
|
|
Real double_prime(Real t) const {
|
using std::ceil;
|
using std::floor;
|
using boost::math::cardinal_b_spline_double_prime;
|
if (t < m_t0 || t > m_t0 + (m_alpha.size()-5)/m_inv_h) {
|
const char* err_msg = "Tried to evaluate the cardinal quintic b-spline outside the domain of of interpolation; extrapolation does not work.";
|
throw std::domain_error(err_msg);
|
}
|
Real x = (t-m_t0)*m_inv_h;
|
// Support of B_5 is [-3, 3]. So -3 < x - j + 2 < 3, so x-1 < j < x+5
|
int64_t j_min = std::max(int64_t(0), int64_t(ceil(x-1)));
|
int64_t j_max = std::min(int64_t(m_alpha.size() - 1), int64_t(floor(x+5)) );
|
Real s = 0;
|
for (int64_t j = j_min; j <= j_max; ++j) {
|
s += m_alpha[j]*cardinal_b_spline_double_prime<5, Real>(x - j + 2);
|
}
|
return s*m_inv_h*m_inv_h;
|
}
|
|
|
Real t_max() const {
|
return m_t0 + (m_alpha.size()-5)/m_inv_h;
|
}
|
|
private:
|
std::vector<Real> m_alpha;
|
Real m_inv_h;
|
Real m_t0;
|
};
|
|
}}}}
|
#endif
|