// Copyright Nick Thompson, 2017
|
// Use, modification and distribution are subject to the
|
// Boost Software License, Version 1.0.
|
// (See accompanying file LICENSE_1_0.txt
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
#ifndef CUBIC_B_SPLINE_DETAIL_HPP
|
#define CUBIC_B_SPLINE_DETAIL_HPP
|
|
#include <limits>
|
#include <cmath>
|
#include <vector>
|
#include <memory>
|
#include <boost/math/constants/constants.hpp>
|
#include <boost/math/special_functions/fpclassify.hpp>
|
|
namespace boost{ namespace math{ namespace detail{
|
|
|
template <class Real>
|
class cubic_b_spline_imp
|
{
|
public:
|
// If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
|
// f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
|
template <class BidiIterator>
|
cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
|
Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
|
Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
|
|
Real operator()(Real x) const;
|
|
Real prime(Real x) const;
|
|
Real double_prime(Real x) const;
|
|
private:
|
std::vector<Real> m_beta;
|
Real m_h_inv;
|
Real m_a;
|
Real m_avg;
|
};
|
|
|
|
template <class Real>
|
Real b3_spline(Real x)
|
{
|
using std::abs;
|
Real absx = abs(x);
|
if (absx < 1)
|
{
|
Real y = 2 - absx;
|
Real z = 1 - absx;
|
return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
|
}
|
if (absx < 2)
|
{
|
Real y = 2 - absx;
|
return boost::math::constants::sixth<Real>()*y*y*y;
|
}
|
return (Real) 0;
|
}
|
|
template<class Real>
|
Real b3_spline_prime(Real x)
|
{
|
if (x < 0)
|
{
|
return -b3_spline_prime(-x);
|
}
|
|
if (x < 1)
|
{
|
return x*(3*boost::math::constants::half<Real>()*x - 2);
|
}
|
if (x < 2)
|
{
|
return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
|
}
|
return (Real) 0;
|
}
|
|
template<class Real>
|
Real b3_spline_double_prime(Real x)
|
{
|
if (x < 0)
|
{
|
return b3_spline_double_prime(-x);
|
}
|
|
if (x < 1)
|
{
|
return 3*x - 2;
|
}
|
if (x < 2)
|
{
|
return (2 - x);
|
}
|
return (Real) 0;
|
}
|
|
|
template <class Real>
|
template <class BidiIterator>
|
cubic_b_spline_imp<Real>::cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
|
Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
|
{
|
using boost::math::constants::third;
|
|
std::size_t length = end_p - f;
|
|
if (length < 5)
|
{
|
if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
|
{
|
throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
|
}
|
if (length < 3)
|
{
|
throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
|
}
|
}
|
|
if (boost::math::isnan(left_endpoint))
|
{
|
throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
|
}
|
if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
|
{
|
throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
|
}
|
if (step_size <= 0)
|
{
|
throw std::logic_error("The step size must be strictly > 0.\n");
|
}
|
// Storing the inverse of the stepsize does provide a measurable speedup.
|
// It's not huge, but nonetheless worthwhile.
|
m_h_inv = 1/step_size;
|
|
// Following Kress's notation, s'(a) = a1, s'(b) = b1
|
Real a1 = left_endpoint_derivative;
|
// See the finite-difference table on Wikipedia for reference on how
|
// to construct high-order estimates for one-sided derivatives:
|
// https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
|
// Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
|
if (boost::math::isnan(a1))
|
{
|
// For simple functions (linear, quadratic, so on)
|
// almost all the error comes from derivative estimation.
|
// This does pairwise summation which gives us another digit of accuracy over naive summation.
|
Real t0 = 4*(f[1] + third<Real>()*f[3]);
|
Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
|
a1 = m_h_inv*(t0 + t1);
|
}
|
|
Real b1 = right_endpoint_derivative;
|
if (boost::math::isnan(b1))
|
{
|
size_t n = length - 1;
|
Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
|
Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
|
|
b1 = m_h_inv*(t0 + t1);
|
}
|
|
// s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
|
// Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
|
m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
|
|
// Since the splines have compact support, they decay to zero very fast outside the endpoints.
|
// This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
|
// boundary [a,b] without massive error.
|
// A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
|
// This algorithm for computing the average is recommended in
|
// http://www.heikohoffmann.de/htmlthesis/node134.html
|
Real t = 1;
|
for (size_t i = 0; i < length; ++i)
|
{
|
if (boost::math::isnan(f[i]))
|
{
|
std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
|
throw std::logic_error(err);
|
}
|
m_avg += (f[i] - m_avg) / t;
|
t += 1;
|
}
|
|
|
// Now we must solve an almost-tridiagonal system, which requires O(N) operations.
|
// There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
|
// so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
|
// See Kress, equations 8.41
|
// The the "tridiagonal" matrix is:
|
// 1 0 -1
|
// 1 4 1
|
// 1 4 1
|
// 1 4 1
|
// ....
|
// 1 4 1
|
// 1 0 -1
|
// Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
|
std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
|
std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
|
|
rhs[0] = -2*step_size*a1;
|
rhs[rhs.size() - 1] = -2*step_size*b1;
|
|
super_diagonal[0] = 0;
|
|
for(size_t i = 1; i < rhs.size() - 1; ++i)
|
{
|
rhs[i] = 6*(f[i - 1] - m_avg);
|
super_diagonal[i] = 1;
|
}
|
|
|
// One step of row reduction on the first row to patch up the 5-diagonal problem:
|
// 1 0 -1 | r0
|
// 1 4 1 | r1
|
// mapsto:
|
// 1 0 -1 | r0
|
// 0 4 2 | r1 - r0
|
// mapsto
|
// 1 0 -1 | r0
|
// 0 1 1/2| (r1 - r0)/4
|
super_diagonal[1] = 0.5;
|
rhs[1] = (rhs[1] - rhs[0])/4;
|
|
// Now do a tridiagonal row reduction the standard way, until just before the last row:
|
for (size_t i = 2; i < rhs.size() - 1; ++i)
|
{
|
Real diagonal = 4 - super_diagonal[i - 1];
|
rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
|
super_diagonal[i] /= diagonal;
|
}
|
|
// Now the last row, which is in the form
|
// 1 sd[n-3] 0 | rhs[n-3]
|
// 0 1 sd[n-2] | rhs[n-2]
|
// 1 0 -1 | rhs[n-1]
|
Real final_subdiag = -super_diagonal[rhs.size() - 3];
|
rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
|
Real final_diag = -1/final_subdiag;
|
// Now we're here:
|
// 1 sd[n-3] 0 | rhs[n-3]
|
// 0 1 sd[n-2] | rhs[n-2]
|
// 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
|
|
final_diag = final_diag - super_diagonal[rhs.size() - 2];
|
rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
|
|
|
// Back substitutions:
|
m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
|
for(size_t i = rhs.size() - 2; i > 0; --i)
|
{
|
m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
|
}
|
m_beta[0] = m_beta[2] + rhs[0];
|
}
|
|
template<class Real>
|
Real cubic_b_spline_imp<Real>::operator()(Real x) const
|
{
|
// See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
|
// just the (at most 5) whose support overlaps the argument.
|
Real z = m_avg;
|
Real t = m_h_inv*(x - m_a) + 1;
|
|
using std::max;
|
using std::min;
|
using std::ceil;
|
using std::floor;
|
|
size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
|
size_t k_max = (size_t) (max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), (long) 0);
|
for (size_t k = k_min; k <= k_max; ++k)
|
{
|
z += m_beta[k]*b3_spline(t - k);
|
}
|
|
return z;
|
}
|
|
template<class Real>
|
Real cubic_b_spline_imp<Real>::prime(Real x) const
|
{
|
Real z = 0;
|
Real t = m_h_inv*(x - m_a) + 1;
|
|
using std::max;
|
using std::min;
|
using std::ceil;
|
using std::floor;
|
|
size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
|
size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
|
|
for (size_t k = k_min; k <= k_max; ++k)
|
{
|
z += m_beta[k]*b3_spline_prime(t - k);
|
}
|
return z*m_h_inv;
|
}
|
|
template<class Real>
|
Real cubic_b_spline_imp<Real>::double_prime(Real x) const
|
{
|
Real z = 0;
|
Real t = m_h_inv*(x - m_a) + 1;
|
|
using std::max;
|
using std::min;
|
using std::ceil;
|
using std::floor;
|
|
size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
|
size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
|
|
for (size_t k = k_min; k <= k_max; ++k)
|
{
|
z += m_beta[k]*b3_spline_double_prime(t - k);
|
}
|
return z*m_h_inv*m_h_inv;
|
}
|
|
|
}}}
|
#endif
|