liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//  Copyright (c) 2006 Xiaogang Zhang
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 
#ifndef BOOST_MATH_BESSEL_JN_HPP
#define BOOST_MATH_BESSEL_JN_HPP
 
#ifdef _MSC_VER
#pragma once
#endif
 
#include <boost/math/special_functions/detail/bessel_j0.hpp>
#include <boost/math/special_functions/detail/bessel_j1.hpp>
#include <boost/math/special_functions/detail/bessel_jy.hpp>
#include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
#include <boost/math/special_functions/detail/bessel_jy_series.hpp>
 
// Bessel function of the first kind of integer order
// J_n(z) is the minimal solution
// n < abs(z), forward recurrence stable and usable
// n >= abs(z), forward recurrence unstable, use Miller's algorithm
 
namespace boost { namespace math { namespace detail{
 
template <typename T, typename Policy>
T bessel_jn(int n, T x, const Policy& pol)
{
    T value(0), factor, current, prev, next;
 
    BOOST_MATH_STD_USING
 
    //
    // Reflection has to come first:
    //
    if (n < 0)
    {
        factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z)
        n = -n;
    }
    else
    {
        factor = 1;
    }
    if(x < 0)
    {
        factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z)
        x = -x;
    }
    //
    // Special cases:
    //
    if(asymptotic_bessel_large_x_limit(T(n), x))
       return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x, pol);
    if (n == 0)
    {
        return factor * bessel_j0(x);
    }
    if (n == 1)
    {
        return factor * bessel_j1(x);
    }
 
    if (x == 0)                             // n >= 2
    {
        return static_cast<T>(0);
    }
 
    BOOST_ASSERT(n > 1);
    T scale = 1;
    if (n < abs(x))                         // forward recurrence
    {
        prev = bessel_j0(x);
        current = bessel_j1(x);
        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
        for (int k = 1; k < n; k++)
        {
            T fact = 2 * k / x;
            //
            // rescale if we would overflow or underflow:
            //
            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
            {
               scale /= current;
               prev /= current;
               current = 1;
            }
            value = fact * current - prev;
            prev = current;
            current = value;
        }
    }
    else if((x < 1) || (n > x * x / 4) || (x < 5))
    {
       return factor * bessel_j_small_z_series(T(n), x, pol);
    }
    else                                    // backward recurrence
    {
        T fn; int s;                        // fn = J_(n+1) / J_n
        // |x| <= n, fast convergence for continued fraction CF1
        boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
        prev = fn;
        current = 1;
        // Check recursion won't go on too far:
        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
        for (int k = n; k > 0; k--)
        {
            T fact = 2 * k / x;
            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
            {
               prev /= current;
               scale /= current;
               current = 1;
            }
            next = fact * current - prev;
            prev = current;
            current = next;
        }
        value = bessel_j0(x) / current;       // normalization
        scale = 1 / scale;
    }
    value *= factor;
 
    if(tools::max_value<T>() * scale < fabs(value))
       return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
 
    return value / scale;
}
 
}}} // namespaces
 
#endif // BOOST_MATH_BESSEL_JN_HPP