///////////////////////////////////////////////////////////////////////////////
|
// Copyright 2017 John Maddock
|
// Distributed under the Boost
|
// Software License, Version 1.0. (See accompanying file
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
//
|
#ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
|
#define BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
|
|
#include <boost/array.hpp>
|
|
namespace boost{ namespace math{ namespace detail{
|
|
template <class T, class Policy>
|
T hypergeometric_1F1_scaled_series(const T& a, const T& b, T z, const Policy& pol, const char* function)
|
{
|
BOOST_MATH_STD_USING
|
//
|
// Result is returned scaled by e^-z.
|
// Whenever the terms start becoming too large, we scale by some factor e^-n
|
// and keep track of the integer scaling factor n. At the end we can perform
|
// an exact subtraction of n from z and scale the result:
|
//
|
T sum(0), term(1), upper_limit(sqrt(boost::math::tools::max_value<T>())), diff;
|
unsigned n = 0;
|
boost::intmax_t log_scaling_factor = 1 - itrunc(boost::math::tools::log_max_value<T>());
|
T scaling_factor = exp(T(log_scaling_factor));
|
boost::intmax_t current_scaling = 0;
|
|
do
|
{
|
sum += term;
|
if (sum >= upper_limit)
|
{
|
sum *= scaling_factor;
|
term *= scaling_factor;
|
current_scaling += log_scaling_factor;
|
}
|
term *= (((a + n) / ((b + n) * (n + 1))) * z);
|
if (n > boost::math::policies::get_max_series_iterations<Policy>())
|
return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
|
++n;
|
diff = fabs(term / sum);
|
} while (diff > boost::math::policies::get_epsilon<T, Policy>());
|
|
z = -z - current_scaling;
|
while (z < log_scaling_factor)
|
{
|
z -= log_scaling_factor;
|
sum *= scaling_factor;
|
}
|
return sum * exp(z);
|
}
|
|
|
|
} } } // namespaces
|
|
#endif // BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
|