liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//  Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
//  History:
//  XZ wrote the original of this file as part of the Google
//  Summer of Code 2006.  JM modified it slightly to fit into the
//  Boost.Math conceptual framework better.
//  Updated 2015 to use Carlson's latest methods.
 
#ifndef BOOST_MATH_ELLINT_RD_HPP
#define BOOST_MATH_ELLINT_RD_HPP
 
#ifdef _MSC_VER
#pragma once
#endif
 
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/ellint_rc.hpp>
#include <boost/math/special_functions/pow.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/policies/error_handling.hpp>
 
// Carlson's elliptic integral of the second kind
// R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
 
namespace boost { namespace math { namespace detail{
 
template <typename T, typename Policy>
T ellint_rd_imp(T x, T y, T z, const Policy& pol)
{
   BOOST_MATH_STD_USING
   using std::swap;
 
   static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
 
   if(x < 0)
   {
      return policies::raise_domain_error<T>(function,
         "Argument x must be >= 0, but got %1%", x, pol);
   }
   if(y < 0)
   {
      return policies::raise_domain_error<T>(function,
         "Argument y must be >= 0, but got %1%", y, pol);
   }
   if(z <= 0)
   {
      return policies::raise_domain_error<T>(function,
         "Argument z must be > 0, but got %1%", z, pol);
   }
   if(x + y == 0)
   {
      return policies::raise_domain_error<T>(function,
         "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
   }
   //
   // Special cases from http://dlmf.nist.gov/19.20#iv
   //
   using std::swap;
   if(x == z)
      swap(x, y);
   if(y == z)
   {
      if(x == y)
      {
         return 1 / (x * sqrt(x));
      }
      else if(x == 0)
      {
         return 3 * constants::pi<T>() / (4 * y * sqrt(y));
      }
      else
      {
         if((std::min)(x, y) / (std::max)(x, y) > 1.3)
            return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
         // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
      }
   }
   if(x == y)
   {
      if((std::min)(x, z) / (std::max)(x, z) > 1.3)
         return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
      // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
   }
   if(y == 0)
      swap(x, y);
   if(x == 0)
   {
      //
      // Special handling for common case, from
      // Numerical Computation of Real or Complex Elliptic Integrals, eq.47
      //
      T xn = sqrt(y);
      T yn = sqrt(z);
      T x0 = xn;
      T y0 = yn;
      T sum = 0;
      T sum_pow = 0.25f;
 
      while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
      {
         T t = sqrt(xn * yn);
         xn = (xn + yn) / 2;
         yn = t;
         sum_pow *= 2;
         sum += sum_pow * boost::math::pow<2>(xn - yn);
      }
      T RF = constants::pi<T>() / (xn + yn);
      //
      // This following calculation suffers from serious cancellation when y ~ z
      // unless we combine terms.  We have:
      //
      // ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
      //
      // Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
      //
      T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
      //
      // Since we've moved the denominator from eq.47 inside the expression, we
      // need to also scale "sum" by the same value:
      //
      pt -= sum / (z * (y - z));
      return pt * RF * 3;
   }
 
   T xn = x;
   T yn = y;
   T zn = z;
   T An = (x + y + 3 * z) / 5;
   T A0 = An;
   // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
   T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
   BOOST_MATH_INSTRUMENT_VARIABLE(Q);
   T lambda, rx, ry, rz;
   unsigned k = 0;
   T fn = 1;
   T RD_sum = 0;
 
   for(; k < policies::get_max_series_iterations<Policy>(); ++k)
   {
      rx = sqrt(xn);
      ry = sqrt(yn);
      rz = sqrt(zn);
      lambda = rx * ry + rx * rz + ry * rz;
      RD_sum += fn / (rz * (zn + lambda));
      An = (An + lambda) / 4;
      xn = (xn + lambda) / 4;
      yn = (yn + lambda) / 4;
      zn = (zn + lambda) / 4;
      fn /= 4;
      Q /= 4;
      BOOST_MATH_INSTRUMENT_VARIABLE(k);
      BOOST_MATH_INSTRUMENT_VARIABLE(RD_sum);
      BOOST_MATH_INSTRUMENT_VARIABLE(Q);
      if(Q < An)
         break;
   }
 
   policies::check_series_iterations<T, Policy>(function, k, pol);
 
   T X = fn * (A0 - x) / An;
   T Y = fn * (A0 - y) / An;
   T Z = -(X + Y) / 3;
   T E2 = X * Y - 6 * Z * Z;
   T E3 = (3 * X * Y - 8 * Z * Z) * Z;
   T E4 = 3 * (X * Y - Z * Z) * Z * Z;
   T E5 = X * Y * Z * Z * Z;
 
   T result = fn * pow(An, T(-3) / 2) *
      (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
      + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
   BOOST_MATH_INSTRUMENT_VARIABLE(result);
   result += 3 * RD_sum;
 
   return result;
}
 
} // namespace detail
 
template <class T1, class T2, class T3, class Policy>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
{
   typedef typename tools::promote_args<T1, T2, T3>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(
      detail::ellint_rd_imp(
         static_cast<value_type>(x),
         static_cast<value_type>(y),
         static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
}
 
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type 
   ellint_rd(T1 x, T2 y, T3 z)
{
   return ellint_rd(x, y, z, policies::policy<>());
}
 
}} // namespaces
 
#endif // BOOST_MATH_ELLINT_RD_HPP