liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
//  (C) Copyright John Maddock 2006.
//  (C) Copyright Jeremy William Murphy 2015.
 
 
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 
#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
#define BOOST_MATH_TOOLS_POLYNOMIAL_HPP
 
#ifdef _MSC_VER
#pragma once
#endif
 
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/math/tools/cxx03_warn.hpp>
#ifdef BOOST_NO_CXX11_LAMBDAS
#include <boost/lambda/lambda.hpp>
#endif
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/real_cast.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/binomial.hpp>
#include <boost/core/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/math/tools/detail/is_const_iterable.hpp>
 
#include <vector>
#include <ostream>
#include <algorithm>
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
#include <initializer_list>
#endif
 
namespace boost{ namespace math{ namespace tools{
 
template <class T>
T chebyshev_coefficient(unsigned n, unsigned m)
{
   BOOST_MATH_STD_USING
   if(m > n)
      return 0;
   if((n & 1) != (m & 1))
      return 0;
   if(n == 0)
      return 1;
   T result = T(n) / 2;
   unsigned r = n - m;
   r /= 2;
 
   BOOST_ASSERT(n - 2 * r == m);
 
   if(r & 1)
      result = -result;
   result /= n - r;
   result *= boost::math::binomial_coefficient<T>(n - r, r);
   result *= ldexp(1.0f, m);
   return result;
}
 
template <class Seq>
Seq polynomial_to_chebyshev(const Seq& s)
{
   // Converts a Polynomial into Chebyshev form:
   typedef typename Seq::value_type value_type;
   typedef typename Seq::difference_type difference_type;
   Seq result(s);
   difference_type order = s.size() - 1;
   difference_type even_order = order & 1 ? order - 1 : order;
   difference_type odd_order = order & 1 ? order : order - 1;
 
   for(difference_type i = even_order; i >= 0; i -= 2)
   {
      value_type val = s[i];
      for(difference_type k = even_order; k > i; k -= 2)
      {
         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
      }
      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
      result[i] = val;
   }
   result[0] *= 2;
 
   for(difference_type i = odd_order; i >= 0; i -= 2)
   {
      value_type val = s[i];
      for(difference_type k = odd_order; k > i; k -= 2)
      {
         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
      }
      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
      result[i] = val;
   }
   return result;
}
 
template <class Seq, class T>
T evaluate_chebyshev(const Seq& a, const T& x)
{
   // Clenshaw's formula:
   typedef typename Seq::difference_type difference_type;
   T yk2 = 0;
   T yk1 = 0;
   T yk = 0;
   for(difference_type i = a.size() - 1; i >= 1; --i)
   {
      yk2 = yk1;
      yk1 = yk;
      yk = 2 * x * yk1 - yk2 + a[i];
   }
   return a[0] / 2 + yk * x - yk1;
}
 
 
template <typename T>
class polynomial;
 
namespace detail {
 
/**
* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
* Chapter 4.6.1, Algorithm D: Division of polynomials over a field.
*
* @tparam  T   Coefficient type, must be not be an integer.
*
* Template-parameter T actually must be a field but we don't currently have that
* subtlety of distinction.
*/
template <typename T, typename N>
BOOST_DEDUCED_TYPENAME disable_if_c<std::numeric_limits<T>::is_integer, void >::type
division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
{
    q[k] = u[n + k] / v[n];
    for (N j = n + k; j > k;)
    {
        j--;
        u[j] -= q[k] * v[j - k];
    }
}
 
template <class T, class N>
T integer_power(T t, N n)
{
   switch(n)
   {
   case 0:
      return static_cast<T>(1u);
   case 1:
      return t;
   case 2:
      return t * t;
   case 3:
      return t * t * t;
   }
   T result = integer_power(t, n / 2);
   result *= result;
   if(n & 1)
      result *= t;
   return result;
}
 
 
/**
* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
* Chapter 4.6.1, Algorithm R: Pseudo-division of polynomials.
*
* @tparam  T   Coefficient type, must be an integer.
*
* Template-parameter T actually must be a unique factorization domain but we
* don't currently have that subtlety of distinction.
*/
template <typename T, typename N>
BOOST_DEDUCED_TYPENAME enable_if_c<std::numeric_limits<T>::is_integer, void >::type
division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
{
    q[k] = u[n + k] * integer_power(v[n], k);
    for (N j = n + k; j > 0;)
    {
        j--;
        u[j] = v[n] * u[j] - (j < k ? T(0) : u[n + k] * v[j - k]);
    }
}
 
 
/**
 * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
 * Chapter 4.6.1, Algorithm D and R: Main loop.
 *
 * @param   u   Dividend.
 * @param   v   Divisor.
 */
template <typename T>
std::pair< polynomial<T>, polynomial<T> >
division(polynomial<T> u, const polynomial<T>& v)
{
    BOOST_ASSERT(v.size() <= u.size());
    BOOST_ASSERT(v);
    BOOST_ASSERT(u);
 
    typedef typename polynomial<T>::size_type N;
 
    N const m = u.size() - 1, n = v.size() - 1;
    N k = m - n;
    polynomial<T> q;
    q.data().resize(m - n + 1);
 
    do
    {
        division_impl(q, u, v, n, k);
    }
    while (k-- != 0);
    u.data().resize(n);
    u.normalize(); // Occasionally, the remainder is zeroes.
    return std::make_pair(q, u);
}
 
//
// These structures are the same as the void specializations of the functors of the same name
// in the std lib from C++14 onwards:
//
struct negate
{
   template <class T>
   T operator()(T const &x) const
   {
      return -x;
   }
};
 
struct plus
{
   template <class T, class U>
   T operator()(T const &x, U const& y) const
   {
      return x + y;
   }
};
 
struct minus
{
   template <class T, class U>
   T operator()(T const &x, U const& y) const
   {
      return x - y;
   }
};
 
} // namespace detail
 
/**
 * Returns the zero element for multiplication of polynomials.
 */
template <class T>
polynomial<T> zero_element(std::multiplies< polynomial<T> >)
{
    return polynomial<T>();
}
 
template <class T>
polynomial<T> identity_element(std::multiplies< polynomial<T> >)
{
    return polynomial<T>(T(1));
}
 
/* Calculates a / b and a % b, returning the pair (quotient, remainder) together
 * because the same amount of computation yields both.
 * This function is not defined for division by zero: user beware.
 */
template <typename T>
std::pair< polynomial<T>, polynomial<T> >
quotient_remainder(const polynomial<T>& dividend, const polynomial<T>& divisor)
{
    BOOST_ASSERT(divisor);
    if (dividend.size() < divisor.size())
        return std::make_pair(polynomial<T>(), dividend);
    return detail::division(dividend, divisor);
}
 
 
template <class T>
class polynomial
{
public:
   // typedefs:
   typedef typename std::vector<T>::value_type value_type;
   typedef typename std::vector<T>::size_type size_type;
 
   // construct:
   polynomial(){}
 
   template <class U>
   polynomial(const U* data, unsigned order)
      : m_data(data, data + order + 1)
   {
       normalize();
   }
 
   template <class I>
   polynomial(I first, I last)
   : m_data(first, last)
   {
       normalize();
   }
 
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
   polynomial(std::vector<T>&& p) : m_data(std::move(p))
   {
      normalize();
   }
#endif
 
   template <class U>
   explicit polynomial(const U& point, typename boost::enable_if<boost::is_convertible<U, T> >::type* = 0)
   {
       if (point != U(0))
          m_data.push_back(point);
   }
 
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
   // move:
   polynomial(polynomial&& p) BOOST_NOEXCEPT
      : m_data(std::move(p.m_data)) { }
#endif
 
   // copy:
   polynomial(const polynomial& p)
      : m_data(p.m_data) { }
 
   template <class U>
   polynomial(const polynomial<U>& p)
   {
      m_data.resize(p.size());
      for(unsigned i = 0; i < p.size(); ++i)
      {
         m_data[i] = boost::math::tools::real_cast<T>(p[i]);
      }
   }
#ifdef BOOST_MATH_HAS_IS_CONST_ITERABLE
    template <class Range>
    explicit polynomial(const Range& r, typename boost::enable_if<boost::math::tools::detail::is_const_iterable<Range> >::type* = 0) 
       : polynomial(r.begin(), r.end()) 
    {
    }
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
    polynomial(std::initializer_list<T> l) : polynomial(std::begin(l), std::end(l))
    {
    }
 
    polynomial&
    operator=(std::initializer_list<T> l)
    {
        m_data.assign(std::begin(l), std::end(l));
        normalize();
        return *this;
    }
#endif
 
 
   // access:
   size_type size() const { return m_data.size(); }
   size_type degree() const
   {
       if (size() == 0)
           throw std::logic_error("degree() is undefined for the zero polynomial.");
       return m_data.size() - 1;
   }
   value_type& operator[](size_type i)
   {
      return m_data[i];
   }
   const value_type& operator[](size_type i) const
   {
      return m_data[i];
   }
 
   T evaluate(T z) const
   {
      return this->operator()(z);
   }
 
   T operator()(T z) const
   {
      return m_data.size() > 0 ? boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size()) : T(0);
   }
   std::vector<T> chebyshev() const
   {
      return polynomial_to_chebyshev(m_data);
   }
 
   std::vector<T> const& data() const
   {
       return m_data;
   }
 
   std::vector<T> & data()
   {
       return m_data;
   }
 
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
   polynomial<T> prime() const
   {
#ifdef BOOST_MSVC
      // Disable int->float conversion warning:
#pragma warning(push)
#pragma warning(disable:4244)
#endif
      if (m_data.size() == 0)
      {
        return polynomial<T>({});
      }
 
      std::vector<T> p_data(m_data.size() - 1);
      for (size_t i = 0; i < p_data.size(); ++i) {
          p_data[i] = m_data[i+1]*static_cast<T>(i+1);
      }
      return polynomial<T>(std::move(p_data));
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
   }
 
   polynomial<T> integrate() const
   {
      std::vector<T> i_data(m_data.size() + 1);
      // Choose integration constant such that P(0) = 0.
      i_data[0] = T(0);
      for (size_t i = 1; i < i_data.size(); ++i)
      {
          i_data[i] = m_data[i-1]/static_cast<T>(i);
      }
      return polynomial<T>(std::move(i_data));
   }
 
   // operators:
   polynomial& operator =(polynomial&& p) BOOST_NOEXCEPT
   {
       m_data = std::move(p.m_data);
       return *this;
   }
#endif
   polynomial& operator =(const polynomial& p)
   {
       m_data = p.m_data;
       return *this;
   }
 
   template <class U>
   typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial&>::type operator +=(const U& value)
   {
       addition(value);
       normalize();
       return *this;
   }
 
   template <class U>
   typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial&>::type operator -=(const U& value)
   {
       subtraction(value);
       normalize();
       return *this;
   }
 
   template <class U>
   typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial&>::type operator *=(const U& value)
   {
      multiplication(value);
      normalize();
      return *this;
   }
 
   template <class U>
   typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial&>::type operator /=(const U& value)
   {
       division(value);
       normalize();
       return *this;
   }
 
   template <class U>
   typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial&>::type operator %=(const U& /*value*/)
   {
       // We can always divide by a scalar, so there is no remainder:
       this->set_zero();
       return *this;
   }
 
   template <class U>
   polynomial& operator +=(const polynomial<U>& value)
   {
      addition(value);
      normalize();
      return *this;
   }
 
   template <class U>
   polynomial& operator -=(const polynomial<U>& value)
   {
       subtraction(value);
       normalize();
       return *this;
   }
 
   template <typename U, typename V>
   void multiply(const polynomial<U>& a, const polynomial<V>& b) {
       if (!a || !b)
       {
           this->set_zero();
           return;
       }
       std::vector<T> prod(a.size() + b.size() - 1, T(0));
       for (unsigned i = 0; i < a.size(); ++i)
           for (unsigned j = 0; j < b.size(); ++j)
               prod[i+j] += a.m_data[i] * b.m_data[j];
       m_data.swap(prod);
   }
 
   template <class U>
   polynomial& operator *=(const polynomial<U>& value)
   {
      this->multiply(*this, value);
      return *this;
   }
 
   template <typename U>
   polynomial& operator /=(const polynomial<U>& value)
   {
       *this = quotient_remainder(*this, value).first;
       return *this;
   }
 
   template <typename U>
   polynomial& operator %=(const polynomial<U>& value)
   {
       *this = quotient_remainder(*this, value).second;
       return *this;
   }
 
   template <typename U>
   polynomial& operator >>=(U const &n)
   {
       BOOST_ASSERT(n <= m_data.size());
       m_data.erase(m_data.begin(), m_data.begin() + n);
       return *this;
   }
 
   template <typename U>
   polynomial& operator <<=(U const &n)
   {
       m_data.insert(m_data.begin(), n, static_cast<T>(0));
       normalize();
       return *this;
   }
 
   // Convenient and efficient query for zero.
   bool is_zero() const
   {
       return m_data.empty();
   }
 
   // Conversion to bool.
#ifdef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
   typedef bool (polynomial::*unmentionable_type)() const;
 
   BOOST_FORCEINLINE operator unmentionable_type() const
   {
       return is_zero() ? false : &polynomial::is_zero;
   }
#else
   BOOST_FORCEINLINE explicit operator bool() const
   {
       return !m_data.empty();
   }
#endif
 
   // Fast way to set a polynomial to zero.
   void set_zero()
   {
       m_data.clear();
   }
 
    /** Remove zero coefficients 'from the top', that is for which there are no
    *        non-zero coefficients of higher degree. */
   void normalize()
   {
#ifndef BOOST_NO_CXX11_LAMBDAS
      m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), [](const T& x)->bool { return x != T(0); }).base(), m_data.end());
#else
       using namespace boost::lambda;
       m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), _1 != T(0)).base(), m_data.end());
#endif
   }
 
private:
    template <class U, class R>
    polynomial& addition(const U& value, R op)
    {
        if(m_data.size() == 0)
            m_data.resize(1, 0);
        m_data[0] = op(m_data[0], value);
        return *this;
    }
 
    template <class U>
    polynomial& addition(const U& value)
    {
        return addition(value, detail::plus());
    }
 
    template <class U>
    polynomial& subtraction(const U& value)
    {
        return addition(value, detail::minus());
    }
 
    template <class U, class R>
    polynomial& addition(const polynomial<U>& value, R op)
    {
        if (m_data.size() < value.size())
            m_data.resize(value.size(), 0);
        for(size_type i = 0; i < value.size(); ++i)
            m_data[i] = op(m_data[i], value[i]);
        return *this;
    }
 
    template <class U>
    polynomial& addition(const polynomial<U>& value)
    {
        return addition(value, detail::plus());
    }
 
    template <class U>
    polynomial& subtraction(const polynomial<U>& value)
    {
        return addition(value, detail::minus());
    }
 
    template <class U>
    polynomial& multiplication(const U& value)
    {
#ifndef BOOST_NO_CXX11_LAMBDAS
       std::transform(m_data.begin(), m_data.end(), m_data.begin(), [&](const T& x)->T { return x * value; });
#else
        using namespace boost::lambda;
        std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 * value));
#endif
        return *this;
    }
 
    template <class U>
    polynomial& division(const U& value)
    {
#ifndef BOOST_NO_CXX11_LAMBDAS
       std::transform(m_data.begin(), m_data.end(), m_data.begin(), [&](const T& x)->T { return x / value; });
#else
        using namespace boost::lambda;
        std::transform(m_data.begin(), m_data.end(), m_data.begin(), ret<T>(_1 / value));
#endif
        return *this;
    }
 
    std::vector<T> m_data;
};
 
 
template <class T>
inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result += b;
   return result;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <class T>
inline polynomial<T> operator + (polynomial<T>&& a, const polynomial<T>& b)
{
   a += b;
   return a;
}
template <class T>
inline polynomial<T> operator + (const polynomial<T>& a, polynomial<T>&& b)
{
   b += a;
   return b;
}
template <class T>
inline polynomial<T> operator + (polynomial<T>&& a, polynomial<T>&& b)
{
   a += b;
   return a;
}
#endif
 
template <class T>
inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result -= b;
   return result;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <class T>
inline polynomial<T> operator - (polynomial<T>&& a, const polynomial<T>& b)
{
   a -= b;
   return a;
}
template <class T>
inline polynomial<T> operator - (const polynomial<T>& a, polynomial<T>&& b)
{
   b -= a;
   return -b;
}
template <class T>
inline polynomial<T> operator - (polynomial<T>&& a, polynomial<T>&& b)
{
   a -= b;
   return a;
}
#endif
 
template <class T>
inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result;
   result.multiply(a, b);
   return result;
}
 
template <class T>
inline polynomial<T> operator / (const polynomial<T>& a, const polynomial<T>& b)
{
   return quotient_remainder(a, b).first;
}
 
template <class T>
inline polynomial<T> operator % (const polynomial<T>& a, const polynomial<T>& b)
{
   return quotient_remainder(a, b).second;
}
 
template <class T, class U>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator + (polynomial<T> a, const U& b)
{
   a += b;
   return a;
}
 
template <class T, class U>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator - (polynomial<T> a, const U& b)
{
   a -= b;
   return a;
}
 
template <class T, class U>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator * (polynomial<T> a, const U& b)
{
   a *= b;
   return a;
}
 
template <class T, class U>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator / (polynomial<T> a, const U& b)
{
   a /= b;
   return a;
}
 
template <class T, class U>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator % (const polynomial<T>&, const U&)
{
   // Since we can always divide by a scalar, result is always an empty polynomial:
   return polynomial<T>();
}
 
template <class U, class T>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator + (const U& a, polynomial<T> b)
{
   b += a;
   return b;
}
 
template <class U, class T>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator - (const U& a, polynomial<T> b)
{
   b -= a;
   return -b;
}
 
template <class U, class T>
inline typename boost::enable_if_c<boost::is_constructible<T, U>::value, polynomial<T> >::type operator * (const U& a, polynomial<T> b)
{
   b *= a;
   return b;
}
 
template <class T>
bool operator == (const polynomial<T> &a, const polynomial<T> &b)
{
    return a.data() == b.data();
}
 
template <class T>
bool operator != (const polynomial<T> &a, const polynomial<T> &b)
{
    return a.data() != b.data();
}
 
template <typename T, typename U>
polynomial<T> operator >> (polynomial<T> a, const U& b)
{
    a >>= b;
    return a;
}
 
template <typename T, typename U>
polynomial<T> operator << (polynomial<T> a, const U& b)
{
    a <<= b;
    return a;
}
 
// Unary minus (negate).
template <class T>
polynomial<T> operator - (polynomial<T> a)
{
    std::transform(a.data().begin(), a.data().end(), a.data().begin(), detail::negate());
    return a;
}
 
template <class T>
bool odd(polynomial<T> const &a)
{
    return a.size() > 0 && a[0] != static_cast<T>(0);
}
 
template <class T>
bool even(polynomial<T> const &a)
{
    return !odd(a);
}
 
template <class T>
polynomial<T> pow(polynomial<T> base, int exp)
{
    if (exp < 0)
        return policies::raise_domain_error(
                "boost::math::tools::pow<%1%>",
                "Negative powers are not supported for polynomials.",
                base, policies::policy<>());
        // if the policy is ignore_error or errno_on_error, raise_domain_error
        // will return std::numeric_limits<polynomial<T>>::quiet_NaN(), which
        // defaults to polynomial<T>(), which is the zero polynomial
    polynomial<T> result(T(1));
    if (exp & 1)
        result = base;
    /* "Exponentiation by squaring" */
    while (exp >>= 1)
    {
        base *= base;
        if (exp & 1)
            result *= base;
    }
    return result;
}
 
template <class charT, class traits, class T>
inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
{
   os << "{ ";
   for(unsigned i = 0; i < poly.size(); ++i)
   {
      if(i) os << ", ";
      os << poly[i];
   }
   os << " }";
   return os;
}
 
} // namespace tools
} // namespace math
} // namespace boost
 
//
// Polynomial specific overload of gcd algorithm:
//
#include <boost/math/tools/polynomial_gcd.hpp>
 
#endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP