liuxiaolong
2021-07-20 58d904a328c0d849769b483e901a0be9426b8209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/* boost random/exponential_distribution.hpp header file
 *
 * Copyright Jens Maurer 2000-2001
 * Copyright Steven Watanabe 2011
 * Copyright Jason Rhinelander 2016
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id$
 *
 * Revision history
 *  2001-02-18  moved to individual header files
 */
 
#ifndef BOOST_RANDOM_EXPONENTIAL_DISTRIBUTION_HPP
#define BOOST_RANDOM_EXPONENTIAL_DISTRIBUTION_HPP
 
#include <boost/config/no_tr1/cmath.hpp>
#include <iosfwd>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/detail/int_float_pair.hpp>
#include <boost/random/uniform_01.hpp>
 
namespace boost {
namespace random {
 
namespace detail {
 
// tables for the ziggurat algorithm
template<class RealType>
struct exponential_table {
    static const RealType table_x[257];
    static const RealType table_y[257];
};
 
template<class RealType>
const RealType exponential_table<RealType>::table_x[257] = {
    8.6971174701310497140, 7.6971174701310497140, 6.9410336293772123602, 6.4783784938325698538,
    6.1441646657724730491, 5.8821443157953997963, 5.6664101674540337371, 5.4828906275260628694,
    5.3230905057543986131, 5.1814872813015010392, 5.0542884899813047117, 4.9387770859012514838,
    4.8329397410251125881, 4.7352429966017412526, 4.6444918854200854873, 4.5597370617073515513,
    4.4802117465284221949, 4.4052876934735729805, 4.3344436803172730116, 4.2672424802773661873,
    4.2033137137351843802, 4.1423408656640511251, 4.0840513104082974638, 4.0282085446479365106,
    3.9746060666737884793, 3.9230625001354895926, 3.8734176703995089983, 3.8255294185223367372,
    3.7792709924116678992, 3.7345288940397975350, 3.6912010902374189454, 3.6491955157608538478,
    3.6084288131289096339, 3.5688252656483374051, 3.5303158891293438633, 3.4928376547740601814,
    3.4563328211327607625, 3.4207483572511205323, 3.3860354424603017887, 3.3521490309001100106,
    3.3190474709707487166, 3.2866921715990692095, 3.2550473085704501813, 3.2240795652862645207,
    3.1937579032122407483, 3.1640533580259734580, 3.1349388580844407393, 3.1063890623398246660,
    3.0783802152540905188, 3.0508900166154554479, 3.0238975044556767713, 2.9973829495161306949,
    2.9713277599210896472, 2.9457143948950456386, 2.9205262865127406647, 2.8957477686001416838,
    2.8713640120155362592, 2.8473609656351888266, 2.8237253024500354905, 2.8004443702507381944,
    2.7775061464397572041, 2.7548991965623453650, 2.7326126361947007411, 2.7106360958679293686,
    2.6889596887418041593, 2.6675739807732670816, 2.6464699631518093905, 2.6256390267977886123,
    2.6050729387408355373, 2.5847638202141406911, 2.5647041263169053687, 2.5448866271118700928,
    2.5253043900378279427, 2.5059507635285939648, 2.4868193617402096807, 2.4679040502973649846,
    2.4491989329782498908, 2.4306983392644199088, 2.4123968126888708336, 2.3942890999214583288,
    2.3763701405361408194, 2.3586350574093374601, 2.3410791477030346875, 2.3236978743901964559,
    2.3064868582835798692, 2.2894418705322694265, 2.2725588255531546952, 2.2558337743672190441,
    2.2392628983129087111, 2.2228425031110364013, 2.2065690132576635755, 2.1904389667232199235,
    2.1744490099377744673, 2.1585958930438856781, 2.1428764653998416425, 2.1272876713173679737,
    2.1118265460190418108, 2.0964902118017147637, 2.0812758743932248696, 2.0661808194905755036,
    2.0512024094685848641, 2.0363380802487695916, 2.0215853383189260770, 2.0069417578945183144,
    1.9924049782135764992, 1.9779727009573602295, 1.9636426877895480401, 1.9494127580071845659,
    1.9352807862970511135, 1.9212447005915276767, 1.9073024800183871196, 1.8934521529393077332,
    1.8796917950722108462, 1.8660195276928275962, 1.8524335159111751661, 1.8389319670188793980,
    1.8255131289035192212, 1.8121752885263901413, 1.7989167704602903934, 1.7857359354841254047,
    1.7726311792313049959, 1.7596009308890742369, 1.7466436519460739352, 1.7337578349855711926,
    1.7209420025219350428, 1.7081947058780575683, 1.6955145241015377061, 1.6829000629175537544,
    1.6703499537164519163, 1.6578628525741725325, 1.6454374393037234057, 1.6330724165359912048,
    1.6207665088282577216, 1.6085184617988580769, 1.5963270412864831349, 1.5841910325326886695,
    1.5721092393862294810, 1.5600804835278879161, 1.5481036037145133070, 1.5361774550410318943,
    1.5243009082192260050, 1.5124728488721167573, 1.5006921768428164936, 1.4889578055167456003,
    1.4772686611561334579, 1.4656236822457450411, 1.4540218188487932264, 1.4424620319720121876,
    1.4309432929388794104, 1.4194645827699828254, 1.4080248915695353509, 1.3966232179170417110,
    1.3852585682631217189, 1.3739299563284902176, 1.3626364025050864742, 1.3513769332583349176,
    1.3401505805295045843, 1.3289563811371163220, 1.3177933761763245480, 1.3066606104151739482,
    1.2955571316866007210, 1.2844819902750125450, 1.2734342382962410994, 1.2624129290696153434,
    1.2514171164808525098, 1.2404458543344064544, 1.2294981956938491599, 1.2185731922087903071,
    1.2076698934267612830, 1.1967873460884031665, 1.1859245934042023557, 1.1750806743109117687,
    1.1642546227056790397, 1.1534454666557748056, 1.1426522275816728928, 1.1318739194110786733,
    1.1211095477013306083, 1.1103581087274114281, 1.0996185885325976575, 1.0888899619385472598,
    1.0781711915113727024, 1.0674612264799681530, 1.0567590016025518414, 1.0460634359770445503,
    1.0353734317905289496, 1.0246878730026178052, 1.0140056239570971074, 1.0033255279156973717,
    0.99264640550727647009, 0.98196705308506317914, 0.97128624098390397896, 0.96060271166866709917,
    0.94991517776407659940, 0.93922231995526297952, 0.92852278474721113999, 0.91781518207004493915,
    0.90709808271569100600, 0.89637001558989069006, 0.88562946476175228052, 0.87487486629102585352,
    0.86410460481100519511, 0.85331700984237406386, 0.84251035181036928333, 0.83168283773427388393,
    0.82083260655441252290, 0.80995772405741906620, 0.79905617735548788109, 0.78812586886949324977,
    0.77716460975913043936, 0.76617011273543541328, 0.75513998418198289808, 0.74407171550050873971,
    0.73296267358436604916, 0.72181009030875689912, 0.71061105090965570413, 0.69936248110323266174,
    0.68806113277374858613, 0.67670356802952337911, 0.66528614139267855405, 0.65380497984766565353,
    0.64225596042453703448, 0.63063468493349100113, 0.61893645139487678178, 0.60715622162030085137,
    0.59528858429150359384, 0.58332771274877027785, 0.57126731653258903915, 0.55910058551154127652,
    0.54682012516331112550, 0.53441788123716615385, 0.52188505159213564105, 0.50921198244365495319,
    0.49638804551867159754, 0.48340149165346224782, 0.47023927508216945338, 0.45688684093142071279,
    0.44332786607355296305, 0.42954394022541129589, 0.41551416960035700100, 0.40121467889627836229,
    0.38661797794112021568, 0.37169214532991786118, 0.35639976025839443721, 0.34069648106484979674,
    0.32452911701691008547, 0.30783295467493287307, 0.29052795549123115167, 0.27251318547846547924,
    0.25365836338591284433, 0.23379048305967553619, 0.21267151063096745264, 0.18995868962243277774,
    0.16512762256418831796, 0.13730498094001380420, 0.10483850756582017915, 0.063852163815003480173,
    0
};
 
template<class RealType>
const RealType exponential_table<RealType>::table_y[257] = {
    0, 0.00045413435384149675545, 0.00096726928232717452884, 0.0015362997803015723824,
    0.0021459677437189061793, 0.0027887987935740759640, 0.0034602647778369039855, 0.0041572951208337952532,
    0.0048776559835423925804, 0.0056196422072054831710, 0.0063819059373191794422, 0.0071633531836349841425,
    0.0079630774380170392396, 0.0087803149858089752347, 0.0096144136425022094101, 0.010464810181029979488,
    0.011331013597834597488, 0.012212592426255380661, 0.013109164931254991070, 0.014020391403181937334,
    0.014945968011691148079, 0.015885621839973162490, 0.016839106826039946359, 0.017806200410911360563,
    0.018786700744696029497, 0.019780424338009741737, 0.020787204072578117603, 0.021806887504283582125,
    0.022839335406385238829, 0.023884420511558170348, 0.024942026419731782971, 0.026012046645134218076,
    0.027094383780955798424, 0.028188948763978634421, 0.029295660224637394015, 0.030414443910466605492,
    0.031545232172893605499, 0.032687963508959533317, 0.033842582150874329031, 0.035009037697397411067,
    0.036187284781931419754, 0.037377282772959360128, 0.038578995503074859626, 0.039792391023374122670,
    0.041017441380414820816, 0.042254122413316231413, 0.043502413568888183301, 0.044762297732943280694,
    0.046033761076175166762, 0.047316792913181548703, 0.048611385573379494401, 0.049917534282706374944,
    0.051235237055126279830, 0.052564494593071689595, 0.053905310196046085104, 0.055257689676697038322,
    0.056621641283742874438, 0.057997175631200659098, 0.059384305633420264487, 0.060783046445479636051,
    0.062193415408540996150, 0.063615431999807331076, 0.065049117786753755036, 0.066494496385339779043,
    0.067951593421936607770, 0.069420436498728751675, 0.070901055162371828426, 0.072393480875708743023,
    0.073897746992364746308, 0.075413888734058408453, 0.076941943170480510100, 0.078481949201606426042,
    0.080033947542319910023, 0.081597980709237420930, 0.083174093009632380354, 0.084762330532368125386,
    0.086362741140756912277, 0.087975374467270219300, 0.089600281910032864534, 0.091237516631040162057,
    0.092887133556043546523, 0.094549189376055853718, 0.096223742550432800103, 0.097910853311492199618,
    0.099610583670637128826, 0.10132299742595363588, 0.10304816017125771553, 0.10478613930657016928,
    0.10653700405000166218, 0.10830082545103379867, 0.11007767640518539026, 0.11186763167005629731,
    0.11367076788274431301, 0.11548716357863353664, 0.11731689921155557057, 0.11916005717532768467,
    0.12101672182667483729, 0.12288697950954513498, 0.12477091858083096578, 0.12666862943751066518,
    0.12858020454522817870, 0.13050573846833078225, 0.13244532790138752023, 0.13439907170221363078,
    0.13636707092642885841, 0.13834942886358021406, 0.14034625107486244210, 0.14235764543247220043,
    0.14438372216063476473, 0.14642459387834493787, 0.14848037564386679222, 0.15055118500103990354,
    0.15263714202744286154, 0.15473836938446807312, 0.15685499236936522013, 0.15898713896931420572,
    0.16113493991759203183, 0.16329852875190180795, 0.16547804187493600915, 0.16767361861725019322,
    0.16988540130252766513, 0.17211353531532005700, 0.17435816917135348788, 0.17661945459049489581,
    0.17889754657247831241, 0.18119260347549629488, 0.18350478709776746150, 0.18583426276219711495,
    0.18818119940425430485, 0.19054576966319540013, 0.19292814997677133873, 0.19532852067956322315,
    0.19774706610509886464, 0.20018397469191127727, 0.20263943909370901930, 0.20511365629383770880,
    0.20760682772422204205, 0.21011915938898825914, 0.21265086199297827522, 0.21520215107537867786,
    0.21777324714870053264, 0.22036437584335949720, 0.22297576805812018050, 0.22560766011668406495,
    0.22826029393071670664, 0.23093391716962742173, 0.23362878343743333945, 0.23634515245705964715,
    0.23908329026244917002, 0.24184346939887722761, 0.24462596913189210901, 0.24743107566532763894,
    0.25025908236886230967, 0.25311029001562948171, 0.25598500703041538015, 0.25888354974901621678,
    0.26180624268936295243, 0.26475341883506220209, 0.26772541993204481808, 0.27072259679906003167,
    0.27374530965280298302, 0.27679392844851734458, 0.27986883323697289920, 0.28297041453878076010,
    0.28609907373707684673, 0.28925522348967773308, 0.29243928816189258772, 0.29565170428126120948,
    0.29889292101558177099, 0.30216340067569352897, 0.30546361924459023541, 0.30879406693456016794,
    0.31215524877417956945, 0.31554768522712893632, 0.31897191284495723773, 0.32242848495608914289,
    0.32591797239355619822, 0.32944096426413633091, 0.33299806876180896713, 0.33658991402867758144,
    0.34021714906678004560, 0.34388044470450243010, 0.34758049462163698567, 0.35131801643748334681,
    0.35509375286678745925, 0.35890847294874976196, 0.36276297335481777335, 0.36665807978151414890,
    0.37059464843514599421, 0.37457356761590215193, 0.37859575940958081092, 0.38266218149600982112,
    0.38677382908413768115, 0.39093173698479710717, 0.39513698183329015336, 0.39939068447523107877,
    0.40369401253053026739, 0.40804818315203238238, 0.41245446599716116772, 0.41691418643300289465,
    0.42142872899761659635, 0.42599954114303435739, 0.43062813728845883923, 0.43531610321563659758,
    0.44006510084235387501, 0.44487687341454851593, 0.44975325116275498919, 0.45469615747461548049,
    0.45970761564213768669, 0.46478975625042618067, 0.46994482528395999841, 0.47517519303737738299,
    0.48048336393045423016, 0.48587198734188493564, 0.49134386959403255500, 0.49690198724154955294,
    0.50254950184134769289, 0.50828977641064283495, 0.51412639381474855788, 0.52006317736823356823,
    0.52610421398361972602, 0.53225388026304326945, 0.53851687200286186590, 0.54489823767243963663,
    0.55140341654064131685, 0.55803828226258748140, 0.56480919291240022434, 0.57172304866482579008,
    0.57878735860284503057, 0.58601031847726802755, 0.59340090169173341521, 0.60096896636523224742,
    0.60872538207962206507, 0.61668218091520762326, 0.62485273870366592605, 0.63325199421436607968,
    0.64189671642726607018, 0.65080583341457104881, 0.66000084107899974178, 0.66950631673192477684,
    0.67935057226476538741, 0.68956649611707798890, 0.70019265508278816709, 0.71127476080507597882,
    0.72286765959357200702, 0.73503809243142351530, 0.74786862198519510742, 0.76146338884989624862,
    0.77595685204011559675, 0.79152763697249565519, 0.80842165152300838005, 0.82699329664305033399,
    0.84778550062398962096, 0.87170433238120363669, 0.90046992992574643800, 0.93814368086217467916,
    1
};
 
template<class RealType = double>
struct unit_exponential_distribution
{
    template<class Engine>
    RealType operator()(Engine& eng) {
        const double * const table_x = exponential_table<double>::table_x;
        const double * const table_y = exponential_table<double>::table_y;
        RealType shift(0);
        for(;;) {
            std::pair<RealType, int> vals = generate_int_float_pair<RealType, 8>(eng);
            int i = vals.second;
            RealType x = vals.first * RealType(table_x[i]);
            if(x < RealType(table_x[i + 1])) return shift + x;
            // For i=0 we need to generate from the tail, but because this is an exponential
            // distribution, the tail looks exactly like the body, so we can simply repeat with a
            // shift:
            if (i == 0) shift += RealType(table_x[1]);
            else {
                RealType y01 = uniform_01<RealType>()(eng);
                RealType y = RealType(table_y[i]) + y01 * RealType(table_y[i+1] - table_y[i]);
 
                // All we care about is whether these are < or > 0; these values are equal to
                // (lbound) or proportional to (ubound) `y` minus the lower/upper bound.
                RealType y_above_ubound = RealType(table_x[i] - table_x[i+1]) * y01 - (RealType(table_x[i]) - x),
                         y_above_lbound = y - (RealType(table_y[i+1]) + (RealType(table_x[i+1]) - x) * RealType(table_y[i+1]));
 
                if (y_above_ubound < 0 // if above the upper bound reject immediately
                        &&
                        (
                         y_above_lbound < 0 // If below the lower bound accept immediately
                         ||
                         y < f(x) // Otherwise it's between the bounds and we need a full check
                        )
                   ) {
                    return x + shift;
                }
            }
        }
    }
    static RealType f(RealType x) {
        using std::exp;
        return exp(-x);
    }
};
 
} // namespace detail
 
 
/**
 * The exponential distribution is a model of \random_distribution with
 * a single parameter lambda.
 *
 * It has \f$\displaystyle p(x) = \lambda e^{-\lambda x}\f$
 *
 * The implementation uses the "ziggurat" algorithm, as described in
 *
 *  @blockquote
 *  "The Ziggurat Method for Generating Random Variables",
 *  George Marsaglia and Wai Wan Tsang, Journal of Statistical Software
 *  Volume 5, Number 8 (2000), 1-7.
 *  @endblockquote
 */
template<class RealType = double>
class exponential_distribution
{
public:
    typedef RealType input_type;
    typedef RealType result_type;
 
    class param_type
    {
    public:
 
        typedef exponential_distribution distribution_type;
 
        /**
         * Constructs parameters with a given lambda.
         *
         * Requires: lambda > 0
         */
        param_type(RealType lambda_arg = RealType(1.0))
          : _lambda(lambda_arg) { BOOST_ASSERT(_lambda > RealType(0)); }
 
        /** Returns the lambda parameter of the distribution. */
        RealType lambda() const { return _lambda; }
 
        /** Writes the parameters to a @c std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        {
            os << parm._lambda;
            return os;
        }
        
        /** Reads the parameters from a @c std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        {
            is >> parm._lambda;
            return is;
        }
 
        /** Returns true if the two sets of parameters are equal. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        { return lhs._lambda == rhs._lambda; }
 
        /** Returns true if the two sets of parameters are different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
 
    private:
        RealType _lambda;
    };
 
    /**
     * Constructs an exponential_distribution with a given lambda.
     *
     * Requires: lambda > 0
     */
    explicit exponential_distribution(RealType lambda_arg = RealType(1.0))
      : _lambda(lambda_arg) { BOOST_ASSERT(_lambda > RealType(0)); }
 
    /**
     * Constructs an exponential_distribution from its parameters
     */
    explicit exponential_distribution(const param_type& parm)
      : _lambda(parm.lambda()) {}
 
    // compiler-generated copy ctor and assignment operator are fine
 
    /** Returns the lambda parameter of the distribution. */
    RealType lambda() const { return _lambda; }
 
    /** Returns the smallest value that the distribution can produce. */
    RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return RealType(0); }
    /** Returns the largest value that the distribution can produce. */
    RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return (std::numeric_limits<RealType>::infinity)(); }
 
    /** Returns the parameters of the distribution. */
    param_type param() const { return param_type(_lambda); }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm) { _lambda = parm.lambda(); }
 
    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() { }
 
    /**
     * Returns a random variate distributed according to the
     * exponential distribution.
     */
    template<class Engine>
    result_type operator()(Engine& eng) const
    { 
        detail::unit_exponential_distribution<RealType> impl;
        return impl(eng) / _lambda;
    }
 
    /**
     * Returns a random variate distributed according to the exponential
     * distribution with parameters specified by param.
     */
    template<class Engine>
    result_type operator()(Engine& eng, const param_type& parm) const
    { 
        return exponential_distribution(parm)(eng);
    }
 
    /** Writes the distribution to a std::ostream. */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, exponential_distribution, ed)
    {
        os << ed._lambda;
        return os;
    }
 
    /** Reads the distribution from a std::istream. */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, exponential_distribution, ed)
    {
        is >> ed._lambda;
        return is;
    }
 
    /**
     * Returns true iff the two distributions will produce identical
     * sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(exponential_distribution, lhs, rhs)
    { return lhs._lambda == rhs._lambda; }
    
    /**
     * Returns true iff the two distributions will produce different
     * sequences of values given equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(exponential_distribution)
 
private:
    result_type _lambda;
};
 
} // namespace random
 
using random::exponential_distribution;
 
} // namespace boost
 
#endif // BOOST_RANDOM_EXPONENTIAL_DISTRIBUTION_HPP