// Contains get_min_count, the core optimization of the spreadsort algorithm.
|
// Also has other helper functions commonly useful across variants.
|
|
// Copyright Steven J. Ross 2001 - 2014.
|
// Distributed under the Boost Software License, Version 1.0.
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
// See http://www.boost.org/libs/sort for library home page.
|
|
/*
|
Some improvements suggested by:
|
Phil Endecott and Frank Gennari
|
*/
|
|
#ifndef BOOST_SORT_SPREADSORT_DETAIL_SPREAD_SORT_COMMON_HPP
|
#define BOOST_SORT_SPREADSORT_DETAIL_SPREAD_SORT_COMMON_HPP
|
#include <algorithm>
|
#include <vector>
|
#include <cstring>
|
#include <limits>
|
#include <functional>
|
#include <boost/static_assert.hpp>
|
#include <boost/sort/pdqsort/pdqsort.hpp>
|
#include <boost/sort/spreadsort/detail/constants.hpp>
|
#include <boost/cstdint.hpp>
|
|
namespace boost {
|
namespace sort {
|
namespace spreadsort {
|
namespace detail {
|
//This only works on unsigned data types
|
template <typename T>
|
inline unsigned
|
rough_log_2_size(const T& input)
|
{
|
unsigned result = 0;
|
//The && is necessary on some compilers to avoid infinite loops
|
//it doesn't significantly impair performance
|
while ((result < (8*sizeof(T))) && (input >> result)) ++result;
|
return result;
|
}
|
|
//Gets the minimum size to call spreadsort on to control worst-case runtime.
|
//This is called for a set of bins, instead of bin-by-bin, to minimize
|
//runtime overhead.
|
//This could be replaced by a lookup table of sizeof(Div_type)*8 but this
|
//function is more general.
|
template<unsigned log_mean_bin_size,
|
unsigned log_min_split_count, unsigned log_finishing_count>
|
inline size_t
|
get_min_count(unsigned log_range)
|
{
|
const size_t typed_one = 1;
|
const unsigned min_size = log_mean_bin_size + log_min_split_count;
|
//Assuring that constants have valid settings
|
BOOST_STATIC_ASSERT(log_min_split_count <= max_splits &&
|
log_min_split_count > 0);
|
BOOST_STATIC_ASSERT(max_splits > 1 &&
|
max_splits < (8 * sizeof(unsigned)));
|
BOOST_STATIC_ASSERT(max_finishing_splits >= max_splits &&
|
max_finishing_splits < (8 * sizeof(unsigned)));
|
BOOST_STATIC_ASSERT(log_mean_bin_size >= 0);
|
BOOST_STATIC_ASSERT(log_finishing_count >= 0);
|
//if we can complete in one iteration, do so
|
//This first check allows the compiler to optimize never-executed code out
|
if (log_finishing_count < min_size) {
|
if (log_range <= min_size && log_range <= max_splits) {
|
//Return no smaller than a certain minimum limit
|
if (log_range <= log_finishing_count)
|
return typed_one << log_finishing_count;
|
return typed_one << log_range;
|
}
|
}
|
const unsigned base_iterations = max_splits - log_min_split_count;
|
//sum of n to n + x = ((x + 1) * (n + (n + x)))/2 + log_mean_bin_size
|
const unsigned base_range =
|
((base_iterations + 1) * (max_splits + log_min_split_count))/2
|
+ log_mean_bin_size;
|
//Calculating the required number of iterations, and returning
|
//1 << (iteration_count + min_size)
|
if (log_range < base_range) {
|
unsigned result = log_min_split_count;
|
for (unsigned offset = min_size; offset < log_range;
|
offset += ++result);
|
//Preventing overflow; this situation shouldn't occur
|
if ((result + log_mean_bin_size) >= (8 * sizeof(size_t)))
|
return typed_one << ((8 * sizeof(size_t)) - 1);
|
return typed_one << (result + log_mean_bin_size);
|
}
|
//A quick division can calculate the worst-case runtime for larger ranges
|
unsigned remainder = log_range - base_range;
|
//the max_splits - 1 is used to calculate the ceiling of the division
|
unsigned bit_length = ((((max_splits - 1) + remainder)/max_splits)
|
+ base_iterations + min_size);
|
//Preventing overflow; this situation shouldn't occur
|
if (bit_length >= (8 * sizeof(size_t)))
|
return typed_one << ((8 * sizeof(size_t)) - 1);
|
//n(log_range)/max_splits + C, optimizing worst-case performance
|
return typed_one << bit_length;
|
}
|
|
// Resizes the bin cache and bin sizes, and initializes each bin size to 0.
|
// This generates the memory overhead to use in radix sorting.
|
template <class RandomAccessIter>
|
inline RandomAccessIter *
|
size_bins(size_t *bin_sizes, std::vector<RandomAccessIter>
|
&bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count)
|
{
|
// Clear the bin sizes
|
for (size_t u = 0; u < bin_count; u++)
|
bin_sizes[u] = 0;
|
//Make sure there is space for the bins
|
cache_end = cache_offset + bin_count;
|
if (cache_end > bin_cache.size())
|
bin_cache.resize(cache_end);
|
return &(bin_cache[cache_offset]);
|
}
|
}
|
}
|
}
|
}
|
|
#endif
|