#ifndef __ARRAY_LOCK_FREE_QUEUE_H__
|
#define __ARRAY_LOCK_FREE_QUEUE_H__
|
|
#include "atomic_ops.h"
|
#include <assert.h> // assert()
|
#include <sched.h> // sched_yield()
|
#include "logger_factory.h"
|
#include "shm_mm.h"
|
#include "shm_allocator.h"
|
|
/// @brief implementation of an array based lock free queue with support for
|
/// multiple producers
|
/// This class is prevented from being instantiated directly (all members and
|
/// methods are private). To instantiate a multiple producers lock free queue
|
/// you must use the ArrayLockFreeQueue fachade:
|
/// ArrayLockFreeQueue<int, 100, ArrayLockFreeQueue> q;
|
|
|
#define _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
template<typename ELEM_T, typename Allocator = SHM_Allocator>
|
class ArrayLockFreeQueue {
|
// ArrayLockFreeQueue will be using this' private members
|
template<
|
typename ELEM_T_,
|
typename Allocator_,
|
template<typename T, typename AT> class Q_TYPE
|
>
|
friend
|
class LockFreeQueue;
|
|
private:
|
/// @brief constructor of the class
|
ArrayLockFreeQueue(size_t qsize = LOCK_FREE_Q_DEFAULT_SIZE);
|
|
virtual ~ArrayLockFreeQueue();
|
|
inline uint32_t size();
|
|
inline bool full();
|
|
inline bool empty();
|
|
bool push(const ELEM_T &a_data);
|
|
bool pop(ELEM_T &a_data);
|
|
/// @brief calculate the index in the circular array that corresponds
|
/// to a particular "count" value
|
inline uint32_t countToIndex(uint32_t a_count);
|
|
ELEM_T &operator[](unsigned i);
|
|
private:
|
size_t Q_SIZE;
|
/// @brief array to keep the elements
|
ELEM_T *m_theQueue;
|
|
/// @brief where a new element will be inserted
|
uint32_t m_writeIndex;
|
|
/// @brief where the next element where be extracted from
|
uint32_t m_readIndex;
|
|
/// @brief maximum read index for multiple producer queues
|
/// If it's not the same as m_writeIndex it means
|
/// there are writes pending to be "committed" to the queue, that means,
|
/// the place for the data was reserved (the index in the array) but
|
/// data is still not in the queue, so the thread trying to read will have
|
/// to wait for those other threads to save the data into the queue
|
///
|
/// note this is only used for multiple producers
|
uint32_t m_maximumReadIndex;
|
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
/// @brief number of elements in the queue
|
uint32_t m_count;
|
#endif
|
|
|
private:
|
/// @brief disable copy constructor declaring it private
|
ArrayLockFreeQueue<ELEM_T, Allocator>(const ArrayLockFreeQueue<ELEM_T> &a_src);
|
|
};
|
|
|
template<typename ELEM_T, typename Allocator>
|
ArrayLockFreeQueue<ELEM_T, Allocator>::ArrayLockFreeQueue(size_t qsize):
|
Q_SIZE(qsize),
|
m_writeIndex(0), // initialisation is not atomic
|
m_readIndex(0), //
|
m_maximumReadIndex(0) //
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
, m_count(0) //
|
#endif
|
{
|
m_theQueue = (ELEM_T *) Allocator::allocate(Q_SIZE * sizeof(ELEM_T));
|
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
ArrayLockFreeQueue<ELEM_T, Allocator>::~ArrayLockFreeQueue() {
|
// std::cout << "destroy ArrayLockFreeQueue\n";
|
|
Allocator::deallocate(m_theQueue);
|
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
inline
|
uint32_t ArrayLockFreeQueue<ELEM_T, Allocator>::countToIndex(uint32_t a_count) {
|
// if Q_SIZE is a power of 2 this statement could be also written as
|
// return (a_count & (Q_SIZE - 1));
|
return (a_count % Q_SIZE);
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
inline
|
uint32_t ArrayLockFreeQueue<ELEM_T, Allocator>::size() {
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
return m_count;
|
#else
|
|
uint32_t currentWriteIndex = m_maximumReadIndex;
|
uint32_t currentReadIndex = m_readIndex;
|
|
// let's think of a scenario where this function returns bogus data
|
// 1. when the statement 'currentWriteIndex = m_maximumReadIndex' is run
|
// m_maximumReadIndex is 3 and m_readIndex is 2. Real size is 1
|
// 2. afterwards this thread is preemted. While this thread is inactive 2
|
// elements are inserted and removed from the queue, so m_maximumReadIndex
|
// is 5 and m_readIndex 4. Real size is still 1
|
// 3. Now the current thread comes back from preemption and reads m_readIndex.
|
// currentReadIndex is 4
|
// 4. currentReadIndex is bigger than currentWriteIndex, so
|
// m_totalSize + currentWriteIndex - currentReadIndex is returned, that is,
|
// it returns that the queue is almost full, when it is almost empty
|
//
|
if (countToIndex(currentWriteIndex) >= countToIndex(currentReadIndex))
|
{
|
return (currentWriteIndex - currentReadIndex);
|
}
|
else
|
{
|
return (Q_SIZE + currentWriteIndex - currentReadIndex);
|
}
|
#endif // _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
inline
|
bool ArrayLockFreeQueue<ELEM_T, Allocator>::full() {
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
return (m_count == (Q_SIZE));
|
#else
|
|
uint32_t currentWriteIndex = m_writeIndex;
|
uint32_t currentReadIndex = m_readIndex;
|
|
if (countToIndex(currentWriteIndex + 1) == countToIndex(currentReadIndex))
|
{
|
// the queue is full
|
return true;
|
}
|
else
|
{
|
// not full!
|
return false;
|
}
|
#endif // _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
inline
|
bool ArrayLockFreeQueue<ELEM_T, Allocator>::empty() {
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
return (m_count == 0);
|
#else
|
|
if (countToIndex( m_readIndex) == countToIndex(m_maximumReadIndex))
|
{
|
// the queue is full
|
return true;
|
}
|
else
|
{
|
// not full!
|
return false;
|
}
|
#endif // _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
}
|
|
|
template<typename ELEM_T, typename Allocator>
|
bool ArrayLockFreeQueue<ELEM_T, Allocator>::push(const ELEM_T &a_data) {
|
uint32_t currentReadIndex;
|
uint32_t currentWriteIndex;
|
|
do {
|
|
currentWriteIndex = m_writeIndex;
|
currentReadIndex = m_readIndex;
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
if (m_count == Q_SIZE) {
|
return false;
|
}
|
#else
|
if (countToIndex(currentWriteIndex + 1) == countToIndex(currentReadIndex))
|
{
|
// the queue is full
|
return false;
|
}
|
#endif
|
|
} while (!CAS(&m_writeIndex, currentWriteIndex, (currentWriteIndex + 1)));
|
|
// We know now that this index is reserved for us. Use it to save the data
|
m_theQueue[countToIndex(currentWriteIndex)] = a_data;
|
|
// update the maximum read index after saving the data. It wouldn't fail if there is only one thread
|
// inserting in the queue. It might fail if there are more than 1 producer threads because this
|
// operation has to be done in the same order as the previous CAS
|
|
while (!CAS(&m_maximumReadIndex, currentWriteIndex, (currentWriteIndex + 1))) {
|
// this is a good place to yield the thread in case there are more
|
// software threads than hardware processors and you have more
|
// than 1 producer thread
|
// have a look at sched_yield (POSIX.1b)
|
sched_yield();
|
}
|
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
AtomicAdd(&m_count, 1);
|
#endif
|
return true;
|
}
|
|
|
template<typename ELEM_T, typename Allocator>
|
bool ArrayLockFreeQueue<ELEM_T, Allocator>::pop(ELEM_T &a_data) {
|
uint32_t currentMaximumReadIndex;
|
uint32_t currentReadIndex;
|
|
do {
|
// to ensure thread-safety when there is more than 1 producer thread
|
// a second index is defined (m_maximumReadIndex)
|
currentReadIndex = m_readIndex;
|
currentMaximumReadIndex = m_maximumReadIndex;
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
|
if (m_count == 0) {
|
return false;
|
}
|
#else
|
if (countToIndex(currentReadIndex) == countToIndex(currentMaximumReadIndex))
|
{
|
// the queue is empty or
|
// a producer thread has allocate space in the queue but is
|
// waiting to commit the data into it
|
return false;
|
}
|
#endif
|
|
// retrieve the data from the queue
|
a_data = m_theQueue[countToIndex(currentReadIndex)];
|
|
// try to perfrom now the CAS operation on the read index. If we succeed
|
// a_data already contains what m_readIndex pointed to before we
|
// increased it
|
if (CAS(&m_readIndex, currentReadIndex, (currentReadIndex + 1))) {
|
#ifdef _WITH_LOCK_FREE_Q_KEEP_REAL_SIZE
|
// m_count.fetch_sub(1);
|
AtomicSub(&m_count, 1);
|
#endif
|
return true;
|
}
|
|
// it failed retrieving the element off the queue. Someone else must
|
// have read the element stored at countToIndex(currentReadIndex)
|
// before we could perform the CAS operation
|
|
} while (1); // keep looping to try again!
|
|
// Something went wrong. it shouldn't be possible to reach here
|
assert(0);
|
|
// Add this return statement to avoid compiler warnings
|
return false;
|
}
|
|
template<typename ELEM_T, typename Allocator>
|
ELEM_T &ArrayLockFreeQueue<ELEM_T, Allocator>::operator[](unsigned int i) {
|
int currentCount = m_count;
|
uint32_t currentReadIndex = m_readIndex;
|
if (i >= currentCount) {
|
std::cerr << "ArrayLockFreeQueue<ELEM_T, Allocator>::operator[] , Error in array limits: " << i
|
<< " is out of range\n";
|
std::exit(EXIT_FAILURE);
|
}
|
return m_theQueue[countToIndex(currentReadIndex + i)];
|
}
|
|
#endif // __LOCK_FREE_QUEUE_IMPL_MULTIPLE_PRODUCER_H__
|