log
panlei
2019-11-29 3edc30421c52011b2dfe25e5fbc43a428faa6977
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
package main
 
import (
    "basic.com/pubsub/protomsg.git"
    "basic.com/valib/logger.git"
    "github.com/golang/protobuf/proto"
    uuid "github.com/satori/go.uuid"
    "ruleprocess/ruleserver"
    "ruleprocess/structure"
    "ruleprocess/util"
    "strconv"
    "time"
)
func ReadData(args *structure.SdkDatas,cameraPolygons []protomsg.CameraPolygon) {
    for _, arg := range args.Sdkdata {
        SdkDataFormat(args.CameraId, arg, cameraPolygons)
    }
}
 
// 计算区域内的目标数量以及将相似度、占比、尺寸等打包
func CountAreaObjs(a *structure.AreaMap,arg *structure.SdkData) {
 
    a.TargetNum = 0
    threshold := 70.0       // 相似度
    intersectionper := 20.0 // 占比
    size := 0.0            // 尺寸
 
    areaPoints := ruleserver.Json2points(a.AreaJson)
    logger.Info("看看图片的width和height:",arg.ImageWidth,arg.ImageHeight)
    widthScale := float64(arg.ImageWidth) / 960
    heigthScale := float64(arg.ImageHeight) / 540
    for _, obj := range arg.Photo {
        //logger.Info("------------------看看sdkData:", arg.SdkName, "的Photo数据----------------", obj, "----顺便看看占比-----:", PgsInterPercent(areaPoints, obj.Rects, widthScale, heigthScale))
        if  obj.Score >= threshold && float64(obj.Rects.Width*obj.Rects.Height) >= size && ruleserver.PgsInterPercent(areaPoints, obj.Rects, widthScale, heigthScale) >= intersectionper {
            // 这步要备齐表达式里所需要的所有参数
            a.TargetNum++
            uuid := uuid.NewV4().String()
            arg1 := structure.Arg{obj.Id,uuid,obj.Score, ruleserver.PgsInterPercent(areaPoints, obj.Rects, widthScale, heigthScale), float64(obj.Rects.Width * obj.Rects.Height), a.AreaJson,obj.Type, obj.Rects, obj.Car,obj.Feature, obj.ThftRes, []*structure.BaseInfo{},"",structure.ResultMsg{}}
            //logger.Println("放进去的arg:-------", arg1)
            a.Args = append(a.Args, &arg1)
            a.FilterData = append(a.FilterData, &arg1)
        }
    }
    logger.Info("区域是:",areaPoints,"区域内目标数量为:",a.TargetNum,"---",len(a.FilterData))
    a.Time = time.Unix(time.Now().Unix(), 0).String()[11:16]
    //logger.Println("--------------------看看区域数据:",*a)
}
 
// 把sdk从数据帧上提取的按照区域分类归置
func SdkDataFormat(cameraId string, arg *structure.SdkData, cameraPolygons []protomsg.CameraPolygon) {
    logger.Info("==================================本sdkData中解出来的目标数据=======================================")
    for _, photo := range arg.Photo {
        logger.Info("--------解析出来的数据---", cameraId, arg.IpcId, photo.Rects, photo.Score)
    }
    for _, polygon := range cameraPolygons {
        //logger.Println("++++++在这儿看一下区域啊:", polygon.Polygon)
        areaMap := structure.AreaMap{CameraId: cameraId, AreaId: polygon.Id, AreaJson: polygon.Polygon, TriggerLine: polygon.TriggerLine, DirectionLine: polygon.DirectionLine}
        // 为每个摄像机区域填充数据
        CountAreaObjs(&areaMap,arg)
        arg.AreaMapList = append(arg.AreaMapList, &areaMap)
    }
}
 
 
 
// 将外部传进来的rect(top,bottom,left,right)转化为自己内部的rect(left top width height)
func rectFormat(rcobj *protomsg.Rect) structure.Rect {
    //logger.Info("++++++++++++++++++++++++++++++收到的yolo的区域坐标:",rcobj)
    rect := structure.Rect{}
    rect.X = float64(rcobj.Left)
    rect.Y = float64(rcobj.Top)
    rect.Width = float64(rcobj.Right - rcobj.Left)
    rect.Height = float64(rcobj.Bottom - rcobj.Top)
    return rect
}
 
 
 
 
// 将外部传进来的sdk数据包解成 SdkDatas
func ParamFormat(msg []byte, args *structure.SdkDatas) protomsg.SdkMessage {
    defer func() {
        if err := recover(); err != nil {
            logger.Info("解包过程的异常捕获", err.(string))
        }
 
    }()
    // 反序列化数据得到sdk入参
    m := protomsg.SdkMessage{}
    err := proto.Unmarshal(msg, &m)
    if err != nil {
        panic("解析msg时出现错误")
    }
 
    // 先进行一下追踪
    ruleserver.FaceIsSame(&m)
    args.CameraId = m.Cid
    args.TaskId = m.Tasklab.Taskid
    // 把图片的二进制解压缩进行画框在压缩回去
    bdata, err := util.UnCompress(m.Data)
    if err != nil {
        panic("解压缩图片时出现错误")
    }
    i := protomsg.Image{}
    err = proto.Unmarshal(bdata, &i)
    logger.Info("接到数据,摄像机为:", m.Cid, "图片的id为:", i.Id)
    //logger.Info("----------------看看有几个算法:",len(m.Tasklab.Sdkinfos))
    for _, sdkinfo := range m.Tasklab.Sdkinfos { // yolo算法
        if sdkinfo.Sdktype == "Yolo" {
            arg := structure.SdkData{}
            arg.TaskId = m.Tasklab.Taskid
            arg.IpcId = sdkinfo.Ipcid
            arg.IsYolo = true
            arg.ImageWidth = int(i.Width)
            arg.ImageHeight = int(i.Height)
            logger.Info("-----追踪之后sdkinfo.Sdkdata的长度为:----", len(sdkinfo.Sdkdata))
            if len(sdkinfo.Sdkdata) > 1 {
                // 大于1才有数据
                yoloParam := protomsg.ParamYoloObj{}
                err = proto.Unmarshal(sdkinfo.Sdkdata, &yoloParam)
                if err != nil {
                    logger.Info("解析YOLO sdk数据时出现错误", err)
                    continue
                }
                var yoloNum int = 0
                for _, info := range yoloParam.Infos {
                    if info.Typ == 0 {
                        //logger.Debug("-------------yolo的坐标有几个",info.RcObj)
                        photoMap := structure.PhotoMap{Rects: rectFormat(info.RcObj), Score: float64(info.Prob) * 100, Type: "yolo",Id:strconv.Itoa(int(info.ObjID))}
                        arg.Photo = append(arg.Photo, photoMap)
                        yoloNum++
                    }
                }
                logger.Info("--------------追踪之后yolo的个数:", yoloNum)
                args.Sdkdata = append(args.Sdkdata, &arg)
            } else {
                continue
            }
 
        }
        if sdkinfo.Sdktype == "FaceDetect" { // 人脸检测
            arg := structure.SdkData{}
            arg.TaskId = m.Tasklab.Taskid
            arg.IpcId = sdkinfo.Ipcid
            arg.IsYolo = false
            arg.ImageWidth = int(i.Width)
            arg.ImageHeight = int(i.Height)
            if len(sdkinfo.Sdkdata) > 1 {
                faceParam := protomsg.ParamFacePos{}
                err = proto.Unmarshal(sdkinfo.Sdkdata, &faceParam)
                if err != nil {
                    logger.Info("解析FACE sdk数据时出现错误", err)
                    continue
                }
                logger.Info("--------------追踪之后人脸的个数:", len(faceParam.Faces))
                for _, info := range faceParam.Faces {
                    //logger.Info("_______________________________________________第一次看相似值:",info.Pos.FAngle.Confidence*100)
                    photoMap := structure.PhotoMap{Id: strconv.Itoa(int(info.Pos.FaceID)) , Rects: rectFormat(info.Pos.RcFace), Score: float64(info.Pos.FAngle.Confidence * 100), Type: "face", ThftRes: *(info.Result), Feature: info.Feats}
                    arg.Photo = append(arg.Photo, photoMap)
                }
                args.Sdkdata = append(args.Sdkdata, &arg)
            } else {
                continue
            }
        }
        if sdkinfo.Sdktype == "Plate" { // 车牌识别
            arg := structure.SdkData{}
            arg.TaskId = m.Tasklab.Taskid
            logger.Info("车牌的ipcid:",sdkinfo.Ipcid)
            arg.IpcId = sdkinfo.Ipcid
            arg.IsYolo = false
            arg.ImageWidth = int(i.Width)
            arg.ImageHeight = int(i.Height)
            if len(sdkinfo.Sdkdata) > 1 {
                plateIDResult  := protomsg.PlateIDResult {}
                err = proto.Unmarshal(sdkinfo.Sdkdata, &plateIDResult )
                if err != nil {
                    logger.Info("解析车牌数据时出现错误", err)
                    continue
                }
                for _, info := range plateIDResult.Result {
                    logger.Info("接收车牌数据:",info.FvdConf,info.NVehicleColor1,info.NPlateFlag,info.RcCarLocation)
                    if info.NConfidence > 70 {
                        logger.Info("车牌也符合的数据",info.FvdConf,info.NVehicleColor1,info.NPlateFlag,info.RcCarLocation,info.NConfidence,)
                        photoMap := structure.PhotoMap{Id: info.License,Score: float64(info.FvdConf)*100,Rects: rectFormat(info.RcCarLocation), Type: "plate", Car:info}
                        arg.Photo = append(arg.Photo, photoMap)
                    }
                }
                args.Sdkdata = append(args.Sdkdata, &arg)
            } else {
                continue
            }
        }
    }
    return m
}