package main
|
|
import (
|
"basic.com/pubsub/protomsg.git"
|
logger "github.com/alecthomas/log4go"
|
"github.com/knetic/govaluate"
|
"ruleprocess/structure"
|
"strconv"
|
)
|
// 人脸算法
|
func Entrance(rule *protomsg.Rule, am *structure.AreaMap,lable *structure.Others,args *structure.SdkDatas,message *protomsg.SdkMessage) structure.LittleRuleResult {
|
logger.Debug("---------走了人脸检测算法",rule.Id,rule.SdkArgAlias,rule.Operator,rule.SdkArgValue,am.AreaId)
|
return filterRule(rule,am)
|
}
|
|
// 过滤规则先筛选出符合条件的目标数量
|
func filterRule(rule *protomsg.Rule, am *structure.AreaMap) structure.LittleRuleResult {
|
if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a97e" || rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a972" {
|
// 处理的是人脸算法 如果这条规则配置的是人脸算法,过滤完条件之后直接得出结果,因为肯定没有数量条件,自己拼接
|
//logger.Info("规则的算法id和区域的算法id:", rule.SdkId, "===", am.sdkId)
|
if rule.PolygonId == am.AreaId { // 算法和区域都得对的上
|
|
if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a972" && rule.SdkArgAlias != "time_rule" {
|
if rule.RuleWithPre == "||" {
|
return structure.LittleRuleResult{}
|
} else {
|
//logger.Debug("当前小规则是:",rule)
|
flag := "false"
|
// 把没有相似者的人脸从filterData中删除
|
for index := 0; index < len(am.FilterData); {
|
// 将达不到阈值的相似者从相似者数组中删除
|
//logger.Info("看看相似者人数:",len(am.FilterData[index].Liker))
|
if len(am.FilterData[index].Liker) == 0 {
|
// Go 语言中切片删除元素的本质是:以被删除元素为分界点,将前后两个部分的内存重新连接起来。不用怀疑,数组删除元素就这么坑爹
|
am.FilterData = append(am.FilterData[:index], am.FilterData[index+1:]...)
|
} else {
|
index++
|
}
|
}
|
if len(am.FilterData) > 0 {
|
flag = "true"
|
}
|
//logger.Info("---------人脸比对符合条件的数量为:",len(am.FilterData))
|
return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + flag, rule.Sort}
|
}
|
}
|
if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a97e" { // 人脸检测
|
//logger.Debug("当前小规则是:",rule)
|
if rule.Operator == "==" || rule.Operator == ">=" || rule.Operator == "<=" || rule.Operator == "<" || rule.Operator == ">" || rule.Operator == "!=" {
|
// 如果是不规矩的连接符统统返回false 规则也只能判断人脸的相似度,所以不存在别的连接符
|
if rule.SdkArgAlias == "score" || rule.SdkArgAlias == "proportion" || rule.SdkArgAlias == "size" { // 判断的是相似值,占比,尺寸等过滤条件,如果再有,还可以再加
|
//logger.Info("-----------------------过规则之前区域内的人脸数量为:",am.TargetNum)
|
var args []*structure.Arg
|
if rule.RuleWithPre == "&&" {
|
args = am.FilterData
|
//logger.Info("过滤后的args的长度为:",len(args))
|
} else {
|
args = am.Args
|
//不清空之前的过滤数据,继续塞
|
//logger.Info("没过滤的args的长度为:",len(args))
|
}
|
// 先清空过滤后的数据,再往里塞本次过滤后的数据
|
am.FilterData = am.FilterData[0:0]
|
//logger.Info("-----------------------人脸过滤的args里的数量:", len(args))
|
for _, arg := range args {
|
var formula string
|
switch rule.SdkArgAlias {
|
case "score":
|
formula = strconv.FormatFloat(arg.Score, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
|
//logger.Info("相似度小公式:", formula)
|
case "proportion":
|
formula = strconv.FormatFloat(arg.Proportion, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
|
//logger.Info("占比公式:", formula)
|
case "size":
|
formula = strconv.FormatFloat(arg.Size, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
|
//logger.Info("尺寸小公式:", formula)
|
}
|
expression, _ := govaluate.NewEvaluableExpression(formula) // 得到数学公式
|
result, _ := expression.Evaluate(nil) // 得到数学公式的结果
|
if result.(bool) {
|
am.FilterData = append(am.FilterData, arg) // 得到符合条件的过滤数据
|
}
|
}
|
am.TargetNum = len(am.FilterData) // 把符合条件的目标数量更新到targetNum字段
|
//logger.Info("过完条件后的目标数量为:",am.TargetNum)
|
if am.TargetNum > 0 {
|
//logger.Info("!!!!!!!!!人脸检测成功")
|
return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "true", rule.Sort}
|
} else {
|
return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "false", rule.Sort}
|
}
|
}
|
} else if rule.SdkArgAlias == "" { // 什么参数都不配的情况
|
if am.TargetNum > 0 {
|
return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "true", rule.Sort}
|
} else {
|
return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "false", rule.Sort}
|
}
|
}
|
}
|
}
|
}
|
return structure.LittleRuleResult{}
|
}
|