panlei
2019-11-30 54c923158d991c0db54307cef60a96ed0b7ac410
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
package main
 
import (
    "basic.com/pubsub/protomsg.git"
    logger "github.com/alecthomas/log4go"
    "github.com/knetic/govaluate"
    "ruleprocess/structure"
    "strconv"
)
// 人脸算法
func Entrance(rule *protomsg.Rule, am *structure.AreaMap,lable *structure.Others,args *structure.SdkDatas,message *protomsg.SdkMessage) structure.LittleRuleResult {
    logger.Debug("---------走了人脸检测算法",rule.Id,rule.SdkArgAlias,rule.Operator,rule.SdkArgValue,am.AreaId)
    return filterRule(rule,am)
}
 
// 过滤规则先筛选出符合条件的目标数量
func filterRule(rule *protomsg.Rule, am *structure.AreaMap) structure.LittleRuleResult {
    if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a97e" || rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a972" {
        // 处理的是人脸算法 如果这条规则配置的是人脸算法,过滤完条件之后直接得出结果,因为肯定没有数量条件,自己拼接
        //logger.Info("规则的算法id和区域的算法id:", rule.SdkId, "===", am.sdkId)
        if rule.PolygonId == am.AreaId { // 算法和区域都得对的上
 
            if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a972" && rule.SdkArgAlias != "time_rule" {
                if rule.RuleWithPre == "||" {
                    return structure.LittleRuleResult{}
                } else {
                    //logger.Debug("当前小规则是:",rule)
                    flag := "false"
                    // 把没有相似者的人脸从filterData中删除
                    for index := 0; index < len(am.FilterData); {
                        // 将达不到阈值的相似者从相似者数组中删除
                        //logger.Info("看看相似者人数:",len(am.FilterData[index].Liker))
                        if len(am.FilterData[index].Liker) == 0 {
                            // Go 语言中切片删除元素的本质是:以被删除元素为分界点,将前后两个部分的内存重新连接起来。不用怀疑,数组删除元素就这么坑爹
                            am.FilterData = append(am.FilterData[:index], am.FilterData[index+1:]...)
                        } else {
                            index++
                        }
                    }
                    if len(am.FilterData) > 0 {
                        flag = "true"
                    }
                    //logger.Info("---------人脸比对符合条件的数量为:",len(am.FilterData))
                    return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + flag, rule.Sort}
                }
            }
            if rule.SdkId == "812b674b-2375-4589-919a-5c1c3278a97e" { // 人脸检测
                //logger.Debug("当前小规则是:",rule)
                if rule.Operator == "==" || rule.Operator == ">=" || rule.Operator == "<=" || rule.Operator == "<" || rule.Operator == ">" || rule.Operator == "!=" {
                    // 如果是不规矩的连接符统统返回false 规则也只能判断人脸的相似度,所以不存在别的连接符
                    if rule.SdkArgAlias == "score" || rule.SdkArgAlias == "proportion" || rule.SdkArgAlias == "size" { // 判断的是相似值,占比,尺寸等过滤条件,如果再有,还可以再加
                        //logger.Info("-----------------------过规则之前区域内的人脸数量为:",am.TargetNum)
                        var args []*structure.Arg
                        if rule.RuleWithPre == "&&" {
                            args = am.FilterData
                            //logger.Info("过滤后的args的长度为:",len(args))
                        } else {
                            args = am.Args
                            //不清空之前的过滤数据,继续塞
                            //logger.Info("没过滤的args的长度为:",len(args))
                        }
                        // 先清空过滤后的数据,再往里塞本次过滤后的数据
                        am.FilterData = am.FilterData[0:0]
                        //logger.Info("-----------------------人脸过滤的args里的数量:", len(args))
                        for _, arg := range args {
                            var formula string
                            switch rule.SdkArgAlias {
                            case "score":
                                formula = strconv.FormatFloat(arg.Score, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
                                //logger.Info("相似度小公式:", formula)
                            case "proportion":
                                formula = strconv.FormatFloat(arg.Proportion, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
                                //logger.Info("占比公式:", formula)
                            case "size":
                                formula = strconv.FormatFloat(arg.Size, 'f', -1, 64) + " " + rule.Operator + " " + rule.SdkArgValue
                                //logger.Info("尺寸小公式:", formula)
                            }
                            expression, _ := govaluate.NewEvaluableExpression(formula) // 得到数学公式
                            result, _ := expression.Evaluate(nil)                      // 得到数学公式的结果
                            if result.(bool) {
                                am.FilterData = append(am.FilterData, arg) // 得到符合条件的过滤数据
                            }
                        }
                        am.TargetNum = len(am.FilterData) // 把符合条件的目标数量更新到targetNum字段
                        //logger.Info("过完条件后的目标数量为:",am.TargetNum)
                        if am.TargetNum > 0 {
                            //logger.Info("!!!!!!!!!人脸检测成功")
                            return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "true", rule.Sort}
                        } else {
                            return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "false", rule.Sort}
                        }
                    }
                } else if rule.SdkArgAlias == "" { // 什么参数都不配的情况
                    if am.TargetNum > 0 {
                        return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "true", rule.Sort}
                    } else {
                        return structure.LittleRuleResult{am.SdkName, rule.RuleWithPre + "" + "false", rule.Sort}
                    }
                }
            }
        }
    }
    return structure.LittleRuleResult{}
}