#include "darknet.h"
|
#include <cuda_runtime.h>
|
#include <curand.h>
|
#include <cublas_v2.h>
|
#include <float.h>
|
|
#include "activations.h"
|
#include "dark_cuda.h"
|
|
__device__ float lhtan_activate_kernel(float x)
|
{
|
if(x < 0) return .001*x;
|
if(x > 1) return .001*(x-1) + 1;
|
return x;
|
}
|
__device__ float lhtan_gradient_kernel(float x)
|
{
|
if(x > 0 && x < 1) return 1;
|
return .001;
|
}
|
|
__device__ float hardtan_activate_kernel(float x)
|
{
|
if (x < -1) return -1;
|
if (x > 1) return 1;
|
return x;
|
}
|
__device__ float linear_activate_kernel(float x){return x;}
|
__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
|
__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
|
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
__device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); }
|
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
|
__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
|
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
|
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
|
__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);}
|
__device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));}
|
__device__ float softplus_kernel(float x, float threshold = 20) {
|
if (x > threshold) return x; // too large
|
else if (x < -threshold) return expf(x); // too small
|
return log1pf(expf(x));
|
//return logf(expf(x) + 1);
|
}
|
__device__ float plse_activate_kernel(float x)
|
{
|
if(x < -4) return .01f * (x + 4);
|
if(x > 4) return .01f * (x - 4) + 1;
|
return .125f*x + .5f;
|
}
|
__device__ float stair_activate_kernel(float x)
|
{
|
int n = floorf(x);
|
if (n%2 == 0) return floorf(x/2.f);
|
else return (x - n) + floorf(x/2.f);
|
}
|
|
|
__device__ float hardtan_gradient_kernel(float x)
|
{
|
if (x > -1 && x < 1) return 1;
|
return 0;
|
}
|
__device__ float linear_gradient_kernel(float x){return 1;}
|
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
|
__device__ float loggy_gradient_kernel(float x)
|
{
|
float y = (x+1.F)/2.F;
|
return 2*(1-y)*y;
|
}
|
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
__device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); }
|
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
|
__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); }
|
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
|
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
__device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); }
|
__device__ float gelu_gradient_kernel(float x) {
|
const float x3 = powf(x, 3);
|
return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5;
|
}
|
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
|
__device__ float stair_gradient_kernel(float x)
|
{
|
if (floorf(x) == x) return 0;
|
return 1;
|
}
|
|
__device__ float activate_kernel(float x, ACTIVATION a)
|
{
|
switch(a){
|
case LINEAR:
|
return linear_activate_kernel(x);
|
case LOGISTIC:
|
return logistic_activate_kernel(x);
|
case LOGGY:
|
return loggy_activate_kernel(x);
|
case RELU:
|
return relu_activate_kernel(x);
|
case RELU6:
|
return relu6_activate_kernel(x);
|
case ELU:
|
return elu_activate_kernel(x);
|
case SELU:
|
return selu_activate_kernel(x);
|
case GELU:
|
return gelu_activate_kernel(x);
|
case RELIE:
|
return relie_activate_kernel(x);
|
case RAMP:
|
return ramp_activate_kernel(x);
|
case LEAKY:
|
return leaky_activate_kernel(x);
|
case TANH:
|
return tanh_activate_kernel(x);
|
case PLSE:
|
return plse_activate_kernel(x);
|
case STAIR:
|
return stair_activate_kernel(x);
|
case HARDTAN:
|
return hardtan_activate_kernel(x);
|
case LHTAN:
|
return lhtan_activate_kernel(x);
|
}
|
return 0;
|
}
|
|
__device__ float gradient_kernel(float x, ACTIVATION a)
|
{
|
switch (a) {
|
case LINEAR:
|
return linear_gradient_kernel(x);
|
case LOGISTIC:
|
return logistic_gradient_kernel(x);
|
case LOGGY:
|
return loggy_gradient_kernel(x);
|
case RELU:
|
return relu_gradient_kernel(x);
|
case RELU6:
|
return relu6_gradient_kernel(x);
|
case NORM_CHAN:
|
return relu_gradient_kernel(x);
|
case ELU:
|
return elu_gradient_kernel(x);
|
case SELU:
|
return selu_gradient_kernel(x);
|
case GELU:
|
return gelu_gradient_kernel(x);
|
case RELIE:
|
return relie_gradient_kernel(x);
|
case RAMP:
|
return ramp_gradient_kernel(x);
|
case LEAKY:
|
return leaky_gradient_kernel(x);
|
case TANH:
|
return tanh_gradient_kernel(x);
|
case PLSE:
|
return plse_gradient_kernel(x);
|
case STAIR:
|
return stair_gradient_kernel(x);
|
case HARDTAN:
|
return hardtan_gradient_kernel(x);
|
case LHTAN:
|
return lhtan_gradient_kernel(x);
|
}
|
return 0;
|
}
|
|
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
|
{
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
int i = id % s;
|
int b = id / s;
|
float x1 = x[b*s + i];
|
float x2 = x[b*s + s / 2 + i];
|
if (id < n) {
|
float de = dy[id];
|
dx[b*s + i] = x2*de;
|
dx[b*s + s / 2 + i] = x1*de;
|
}
|
}
|
|
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
|
{
|
binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
|
{
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
int i = id % s;
|
int b = id / s;
|
float x1 = x[b*s + i];
|
float x2 = x[b*s + s / 2 + i];
|
if (id < n) y[id] = x1*x2;
|
}
|
|
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
|
{
|
binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if(i < n) x[i] = activate_kernel(x[i], a);
|
}
|
|
|
|
__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
float x_val = x[i];
|
float sigmoid = logistic_activate_kernel(x_val);
|
if (output_sigmoid_gpu) output_sigmoid_gpu[i] = sigmoid;
|
output_gpu[i] = x_val * sigmoid;
|
}
|
}
|
|
__device__ float mish_njuffa(float x)
|
{
|
float r;
|
float e = expf(x);
|
r = 1.0f / fmaf(fmaf(-0.5f, e, -1.0f), e, -1.0f);
|
r = fmaf(r, x, x);
|
return r;
|
}
|
|
__device__ float mish_yashas(float x)
|
{
|
float e = __expf(x);
|
if (x <= -18.0f)
|
return x * e;
|
|
float n = e * e + 2 * e;
|
if (x <= -5.0f)
|
return x * __fdividef(n, n + 2);
|
|
return x - 2 * __fdividef(x, n + 2);
|
}
|
|
__device__ float mish_yashas2(float x)
|
{
|
float e = __expf(x);
|
float n = e * e + 2 * e;
|
if (x <= -0.6f)
|
return x * __fdividef(n, n + 2);
|
|
return x - 2 * __fdividef(x, n + 2);
|
}
|
|
// https://github.com/digantamisra98/Mish
|
__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
const float MISH_THRESHOLD = 20;
|
float x_val = x[i];
|
if (activation_input) activation_input[i] = x_val; // store value before activation
|
//output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val)));
|
|
// Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20
|
// TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49
|
// log1p(x) == log(x + 1)
|
//output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) );
|
output_gpu[i] = mish_yashas2(x_val);
|
//output_gpu[i] = mish_njuffa(x_val);
|
}
|
}
|
|
__device__ float hard_mish_yashas(float x)
|
{
|
if (x > 0)
|
return x;
|
if (x > -2)
|
return x * x / 2 + x;
|
return 0;
|
}
|
|
__global__ void activate_array_hard_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
|
float x_val = x[i];
|
if (activation_input) activation_input[i] = x_val; // store value before activation
|
output_gpu[i] = hard_mish_yashas(x_val);
|
}
|
}
|
__global__ void activate_array_leaky_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = leaky_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_selu_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = selu_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_gelu_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = gelu_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_logistic_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = logistic_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_tanh_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = tanh_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_hardtan_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = hardtan_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_relu_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = relu_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void activate_array_relu6_kernel(float *x, int n)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
x[index] = relu6_activate_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
}
|
|
// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30
|
__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
float swish = x[i];
|
delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a);
|
}
|
}
|
|
// https://github.com/digantamisra98/Mish
|
__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
const float MISH_THRESHOLD = 20.0f;
|
|
// implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80
|
// implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31
|
// log1p(x) == log(x + 1)
|
const float inp = activation_input_gpu[i];
|
const float sp = softplus_kernel(inp, MISH_THRESHOLD);
|
const float grad_sp = -expm1f(-sp);
|
//const float grad_sp = 1 - expf(-sp);
|
const float tsp = tanh(sp);
|
const float grad_tsp = (1 - tsp*tsp) * grad_sp;
|
const float grad = inp * grad_tsp + tsp;
|
delta[i] *= grad;
|
|
//float x = activation_input[i];
|
//float d = 2 * expf(x) + expf(2 * x) + 2;
|
//float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6);
|
//float derivative = expf(x) * w / (d * d);
|
//delta[i] *= derivative;
|
}
|
}
|
|
__device__ float hard_mish_yashas_grad(float x)
|
{
|
if (x > 0)
|
return 1;
|
if (x > -2)
|
return x + 1;
|
return 0;
|
}
|
|
__global__ void gradient_array_hard_mish_kernel(int n, float *activation_input_gpu, float *delta)
|
{
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if (i < n) {
|
|
const float x = activation_input_gpu[i];
|
delta[i] *= hard_mish_yashas_grad(x);
|
}
|
}
|
|
__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= leaky_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_revleaky_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] /= leaky_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_selu_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= selu_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_gelu_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= gelu_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= logistic_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= tanh_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= hardtan_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_relu_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= relu_gradient_kernel(x[index]);
|
}
|
}
|
|
__global__ void gradient_array_relu6_kernel(float *x, int n, float *delta)
|
{
|
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
if (index < n) {
|
delta[index] *= relu6_gradient_kernel(x[index]);
|
}
|
}
|
|
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
if (a == LINEAR) return;
|
else if (a == LEAKY || a == REVLEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
else
|
activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void activate_array_hard_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
activate_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
if (a == LINEAR) return;
|
else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == REVLEAKY) gradient_array_revleaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
//else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) {
|
printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n");
|
exit(0);
|
}
|
else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
else
|
gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
|
extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
extern "C" void gradient_array_hard_mish_ongpu(int n, float *activation_input_gpu, float *delta)
|
{
|
const int num_blocks = get_number_of_blocks(n, BLOCK);
|
gradient_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
|
__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
|
{
|
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int wh_i = i % wh_step;
|
int b = i / wh_step;
|
|
const float eps = 0.0001;
|
if (i < size) {
|
float sum = eps;
|
int k;
|
for (k = 0; k < channels; ++k) {
|
float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
if (val > 0) sum += val;
|
}
|
for (k = 0; k < channels; ++k) {
|
float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
if (val > 0) val = val / sum;
|
else val = 0;
|
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
|
}
|
}
|
}
|
|
extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
|
{
|
// n = w*h*c*batch
|
// size = w*h*batch
|
int size = n / channels;
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK);
|
|
activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
|
|
__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
|
{
|
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int wh_i = i % wh_step;
|
int b = i / wh_step;
|
|
const float eps = 0.0001;
|
if (i < size) {
|
float sum = eps;
|
float max_val = -FLT_MAX;
|
int k;
|
if (use_max_val) {
|
for (k = 0; k < channels; ++k) {
|
float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
if (val > max_val || k == 0) max_val = val;
|
}
|
}
|
else
|
max_val = 0;
|
|
for (k = 0; k < channels; ++k) {
|
float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
sum += expf(val - max_val);
|
}
|
for (k = 0; k < channels; ++k) {
|
float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
val = expf(val - max_val) / sum;
|
if (isnan(val) || isinf(val)) val = 0;
|
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
|
}
|
}
|
}
|
|
extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
|
{
|
// n = w*h*c*batch
|
// size = w*h*batch
|
int size = n / channels;
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK);
|
|
activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
|
|
__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
|
{
|
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int wh_i = i % wh_step;
|
int b = i / wh_step;
|
|
if (i < size) {
|
int k;
|
/*
|
float grad = 0;
|
for (k = 0; k < channels; ++k) {
|
const int index = wh_i + k * wh_step + b*wh_step*channels;
|
float out = x[index];
|
float delta = delta_gpu[index];
|
grad += out*fabs(delta);
|
}
|
*/
|
for (k = 0; k < channels; ++k) {
|
const int index = wh_i + k * wh_step + b*wh_step*channels;
|
float delta = delta_gpu[index];
|
float grad = x[index] * (1 - x[index]);
|
delta = delta * grad;
|
if (isnan(delta) || isinf(delta)) delta = 0;
|
delta_gpu[index] = delta;
|
}
|
}
|
}
|
|
extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
|
{
|
// n = w*h*c*batch
|
// size = w*h*batch
|
int size = n / channels;
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK);
|
|
gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|
|
|
__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
|
{
|
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int wh_i = i % wh_step;
|
int b = i / wh_step;
|
|
if (i < size) {
|
int k;
|
/*
|
float grad = 0;
|
for (k = 0; k < channels; ++k) {
|
const int index = wh_i + k * wh_step + b*wh_step*channels;
|
float out = x[index];
|
float delta = delta_gpu[index];
|
grad += out*fabs(delta);
|
}
|
*/
|
for (k = 0; k < channels; ++k) {
|
const int index = wh_i + k * wh_step + b*wh_step*channels;
|
if (x[index] > 0) {
|
float delta = delta_gpu[index];
|
float grad = x[index];
|
delta = delta * grad;
|
delta_gpu[index] = delta;
|
}
|
}
|
}
|
}
|
|
extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
|
{
|
// n = w*h*c*batch
|
// size = w*h*batch
|
int size = n / channels;
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK);
|
|
gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
|
CHECK_CUDA(cudaPeekAtLastError());
|
}
|